Abstract: This work aims to optimize the argon arc welding process of TC4 titanium alloy by numerical method, analyse the microstructure features and mechanical properties of the welding joint under the optimum technological. The modeling results were validated with the verification experiment. The results show that the base metal of the welding joint can be fully penetrated with the voltage of 20 V, the current of 130 A, and the welding speed of 3 mm/s by argon arc welding of 8 mm plate of TC4 titanium alloy, well-formed and defect-free welded joints can be obtained under these process parameters combined with experimental verification. Different microstructure states that can be formed at different cooling rates, the cooling rate in the fusion zone can reach 788 ℃/s, mainly columnar crystals and a few equiaxed crystals, and a large number of needle-like α′ martensite formed in the crystal. And the average hardness is 390.96HV, which is 1.11 times that of the base metal. The cooling rate of the coarse-grained zone in the heat-affected zone reaches 475 ℃/s, there are lamellar α phase precipitated in the β grains and the average hardness is 328.19HV, which is lower than that of the base metal. The cooling rate of the fine-grained zone in the heat-affected zone reaches 67 ℃/s, the grain size is smaller than that in the coarse-grained zone and a very small amount of martensite is formed, the average hardness is 363.69HV. The conclusions may provide a design reference of welding technology for TC4 titanium alloy.
方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
FANG Jing, QI Wenjun, HU Guoyu. Numerical Simulation and Experimental Research on TIG Welding of 8 mm Medium and Heavy Plate TC4 Titanium Alloy. Materials Reports, 2023, 37(22): 22030018-6.
1 Jiang J, Qi L C, Zhang M J, et al. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(3), 484. 2 Choi B H, Choi B K. Journal of Materials Processing Technology, 2008, 201 (1/2/3), 526. 3 Danielson P, Wilson R, D Alman. Office of Scientific & Technical Information Technical Reports, 2003, 161(2), 39. 4 Gao X L, Zhang L J, Jing L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2013, 559(JAN. 1), 14. 5 Chen C, Fan C, Cai X, et al. Journal of Manufacturing Processes, 2019, 46, 241. 6 Liu Z G, Zhou X J, Zhu T T, et al. Materials Reports, 2021, 35(S2), 353(in Chinese). 刘自刚, 周晓静, 朱婷婷, 等. 材料导报, 2021, 35(S2), 353. 7 Ma Q, Cao D. The Chinese Journal of Nonferrous Metals, 2019, 29(10), 7(in Chinese). 马权, 曹迪. 中国有色金属学报, 2019, 29(10), 7. 8 Gao F, Cui Y, Lv Y, et al. Materials Science and Engineering: A, 2021, 827, 142024. 9 Han X, Dong J H, Gao X G. Electric Welding Machine, 2016, 46(12), 5 (in Chinese). 韩旭, 董俊慧, 高晓刚. 电焊机, 2016, 46(12), 5. 10 Gao X G, Dong J H, Han X. Welding & Joining, 2016(7), 5 (in Chinese). 高晓刚, 董俊慧, 韩旭. 焊接, 2016(7), 5. 11 Swca B, Yhs B, Csz C. Transactions of Nonferrous Metals Society of China, 2021, 31(2), 416. 12 Tsirkas S A. Optics & Laser Technology, 2018, 100, 45. 13 Karpagaraj A, Kumar N R, Thiyaneshwaran N, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(10), 1. 14 Li X X, Wang H Y, Zhang J X. Transactions of the China Welding Institution, 2013, 34(12), 4(in Chinese). 李兴霞, 王红玉, 张建勋. 焊接学报, 2013, 34(12), 4. 15 Zhao X L, Wang K. International Journal of Materials Research, 2019, 110(5), 466. 16 Akbari M, Saedodin S, D Toghraie, et al. Optics and Laser Technology, 2014, 59, 52. 17 Scott D A. Weld Journal-New York, 1999, 78, 15-s. 18 Duan W, Zhou L H. Hot Working Technology, 2018, 47(15), 4 (in Chinese). 段伟, 周丽红. 热加工工艺, 2018, 47(15), 4. 19 Liu C, Zhang J, Jing N. Rare Metal Materials and Engineering, 2009, 38(8), 1317. 20 Gu J C, Tong L G, Li L, et al. Materials Reports, 2014, 28(1), 143 (in Chinese). 谷京晨, 童莉葛, 黎磊, 等. 材料导报, 2014, 28(1), 143. 21 Li R Y. Numerical simulation of the 3-D transient temperature and stress fields for GTAW based on SYSWELD Software. Master's Thesis, China University of Petroleum, China, 2008 (in Chinese). 李瑞英. 基于SYSWELD的三维瞬态GTAW温度场与应力场的有限元分析. 硕士学位论文, 中国石油大学, 2008. 22 Wu C S. Manufacturing Technology and Machine Tool, 2008(7), 1. 武传松. 制造技术与机床, 2008(7), 1. 23 Zhang W Y. Welding metallurgy: basic principles, Machinery Industry Press, China, 1995. 张文钺. 焊接冶金学: 基本原理, 机械工业出版社, 1995. 24 Wang B S, Kong L, Wang M, et al. Electric Welding Machine, 2021, 51(4), 14 (in Chinese). 王博士, 孔谅, 王敏, 等. 电焊机, 2021, 51(4), 14. 25 Chen B, Zhang H T, Wang H, et al. Hot Working Technology, 2022(1), 140 (in Chinese). 陈兵, 张海涛, 王鹤, 等. 热加工工艺, 2022(1), 140. 26 He C H, Feng X. Chemical principles, Science Press, China, 2001, pp. 190 (in Chinese). 何潮洪, 冯霄.化工原理, 科学出版社, 2001, pp. 190. 27 Wu H, Chang Y L, Mei Q, et al. The International Journal of Advanced Manufacturing Technology, 2019, 104, 1. 28 Diao L Y. Numerical simulation and experimental research on laser welding of thick plate high strength steel. Master's Thesis, Southwest Jiaotong University, China, 2018 (in Chinese). 刁露阳. 厚板高强钢激光焊接数值模拟与试验研究. 硕士学位论文, 西南交通大学, 2018. 29 Zhao S J, Qi W J, Huang Y H, et al. Surface Technology, 2020, 49(2), 301(in Chinese). 赵盛举, 祁文军, 黄艳华, 等. 表面技术, 2020, 49(2), 301. 30 Liu N. Study on hardfacing technology of TC4 titanium alloy TIG wire filling. Master's Thesis, Harbin Institute of Technology, China, 2013(in Chinese). 刘宁. TC4钛合金TIG填丝堆焊成型技术研究.硕士学位论文, 哈尔滨工业大学, 2013. 31 Ahmed T, Rack H J. Materials Science and Engineering: A, 1998, 243(1), 206. 32 Fang N W, Guo E J, Huang R S, et al. Materials Research Express, 2021, 8(1). 33 Philip J T, Mathew J, Kuriachen B. Friction, 2019, 7(6), 40. 34 Shen C, Feng Q, Wang S Q, et al. Materials Reports, 2021, 35(S2), 452(in Chinese). 沈楚, 冯庆, 王思琦, 等. 材料导报, 2021, 35(S2), 452.