Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22030018-6    https://doi.org/10.11896/cldb.22030018
  金属与金属基复合材料 |
8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究
方静, 祁文军*, 胡国玉*
新疆大学机械工程学院,乌鲁木齐 830017
Numerical Simulation and Experimental Research on TIG Welding of 8 mm Medium and Heavy Plate TC4 Titanium Alloy
FANG Jing, QI Wenjun*, HU Guoyu*
School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
下载:  全 文 ( PDF ) ( 16123KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用数值模拟方法对TC4钛合金非熔化极惰性气体保护电弧焊(TIG)进行焊接工艺优化,并结合实验进行验证,在最优工艺下分析接头的显微组织及力学性能。结果表明:通过数值模拟仿真得到的TC4钛合金8 mm中厚板TIG焊焊接在电压为20 V、电流为130 A、焊接速度为3 mm/s时,接头母材能完全焊透,结合实验验证在此工艺参数下可得到成形良好无缺陷的焊接接头;分析不同冷却速度下形成的组织形态,焊缝区冷却速度可达788 ℃/s,主要有柱状晶及少量等轴晶,且晶内形成大量针状α′马氏体,显微硬度平均值达到390.96HV,是母材TC4硬度380HV的1.11倍,热影响区的粗晶区冷却速度达475 ℃/s,为β晶粒中析出的片层状α相,显微硬度平均值为328.19HV,低于母材硬度,热影响区的细晶区冷却速度为67 ℃/s,晶粒尺寸小于粗晶区,形成极少量的马氏体组织,显微硬度平均值为363.69HV。数值模拟结合实验验证进行工艺优化,可减少实验次数,是进行焊接工艺优化的有效手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方静
祁文军
胡国玉
关键词:  TIG焊接  TC4钛合金  热循环曲线  显微组织  数值模拟    
Abstract: This work aims to optimize the argon arc welding process of TC4 titanium alloy by numerical method, analyse the microstructure features and mechanical properties of the welding joint under the optimum technological. The modeling results were validated with the verification experiment. The results show that the base metal of the welding joint can be fully penetrated with the voltage of 20 V, the current of 130 A, and the welding speed of 3 mm/s by argon arc welding of 8 mm plate of TC4 titanium alloy, well-formed and defect-free welded joints can be obtained under these process parameters combined with experimental verification. Different microstructure states that can be formed at different cooling rates, the cooling rate in the fusion zone can reach 788 ℃/s, mainly columnar crystals and a few equiaxed crystals, and a large number of needle-like α′ martensite formed in the crystal. And the average hardness is 390.96HV, which is 1.11 times that of the base metal. The cooling rate of the coarse-grained zone in the heat-affected zone reaches 475 ℃/s, there are lamellar α phase precipitated in the β grains and the average hardness is 328.19HV, which is lower than that of the base metal. The cooling rate of the fine-grained zone in the heat-affected zone reaches 67 ℃/s, the grain size is smaller than that in the coarse-grained zone and a very small amount of martensite is formed, the average hardness is 363.69HV. The conclusions may provide a design reference of welding technology for TC4 titanium alloy.
Key words:  TIG welding    TC4 titanium alloy    thermal cycle curve    microstructure    numerical simulation
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TG444.1  
基金资助: 新疆维吾尔自治区自然科学基金(2021D01C051)
通讯作者:  * 祁文军,新疆大学智能制造现代产业学院教授、硕士研究生导师。1990年西南交通大学材料系焊接专业本科毕业,1993年西南交通大学材料工程学院焊接力学专业硕士毕业后到新疆大学工作至今。目前主要从事材料加工领域中的数字化设计与应用、机电工程等方面的研究工作。授权专利10余项,发表论文100余篇,包括《焊接学报》《表面技术》《材料工程》等。
胡国玉,新疆大学智能制造现代产业学院副教授、硕士研究生导师。2003年新疆大学机械电子工程工学硕士毕业,2015年博士毕业到新疆大学工作至今。目前主要从事非传统加工工艺及放法、短电弧放电加工技术及复合加工工艺、农牧高端装备及特种机器人等方面的研究工作。近年来在国内外核心期刊上发表论文30余篇。wenjuntsi@163.com;xjhuguoyu@xju.edu.cn   
作者简介:  方静,2020年6月毕业于新疆大学,获得学士学位。现为新疆大学智能制造现代产业学院硕士研究生,在祁文军教授的指导下主要从事钛合金氩弧焊、激光焊焊接工艺方面的研究。
引用本文:    
方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
FANG Jing, QI Wenjun, HU Guoyu. Numerical Simulation and Experimental Research on TIG Welding of 8 mm Medium and Heavy Plate TC4 Titanium Alloy. Materials Reports, 2023, 37(22): 22030018-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030018  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22030018
1 Jiang J, Qi L C, Zhang M J, et al. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(3), 484.
2 Choi B H, Choi B K. Journal of Materials Processing Technology, 2008, 201 (1/2/3), 526.
3 Danielson P, Wilson R, D Alman. Office of Scientific & Technical Information Technical Reports, 2003, 161(2), 39.
4 Gao X L, Zhang L J, Jing L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2013, 559(JAN. 1), 14.
5 Chen C, Fan C, Cai X, et al. Journal of Manufacturing Processes, 2019, 46, 241.
6 Liu Z G, Zhou X J, Zhu T T, et al. Materials Reports, 2021, 35(S2), 353(in Chinese).
刘自刚, 周晓静, 朱婷婷, 等. 材料导报, 2021, 35(S2), 353.
7 Ma Q, Cao D. The Chinese Journal of Nonferrous Metals, 2019, 29(10), 7(in Chinese).
马权, 曹迪. 中国有色金属学报, 2019, 29(10), 7.
8 Gao F, Cui Y, Lv Y, et al. Materials Science and Engineering: A, 2021, 827, 142024.
9 Han X, Dong J H, Gao X G. Electric Welding Machine, 2016, 46(12), 5 (in Chinese).
韩旭, 董俊慧, 高晓刚. 电焊机, 2016, 46(12), 5.
10 Gao X G, Dong J H, Han X. Welding & Joining, 2016(7), 5 (in Chinese).
高晓刚, 董俊慧, 韩旭. 焊接, 2016(7), 5.
11 Swca B, Yhs B, Csz C. Transactions of Nonferrous Metals Society of China, 2021, 31(2), 416.
12 Tsirkas S A. Optics & Laser Technology, 2018, 100, 45.
13 Karpagaraj A, Kumar N R, Thiyaneshwaran N, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(10), 1.
14 Li X X, Wang H Y, Zhang J X. Transactions of the China Welding Institution, 2013, 34(12), 4(in Chinese).
李兴霞, 王红玉, 张建勋. 焊接学报, 2013, 34(12), 4.
15 Zhao X L, Wang K. International Journal of Materials Research, 2019, 110(5), 466.
16 Akbari M, Saedodin S, D Toghraie, et al. Optics and Laser Technology, 2014, 59, 52.
17 Scott D A. Weld Journal-New York, 1999, 78, 15-s.
18 Duan W, Zhou L H. Hot Working Technology, 2018, 47(15), 4 (in Chinese).
段伟, 周丽红. 热加工工艺, 2018, 47(15), 4.
19 Liu C, Zhang J, Jing N. Rare Metal Materials and Engineering, 2009, 38(8), 1317.
20 Gu J C, Tong L G, Li L, et al. Materials Reports, 2014, 28(1), 143 (in Chinese).
谷京晨, 童莉葛, 黎磊, 等. 材料导报, 2014, 28(1), 143.
21 Li R Y. Numerical simulation of the 3-D transient temperature and stress fields for GTAW based on SYSWELD Software. Master's Thesis, China University of Petroleum, China, 2008 (in Chinese).
李瑞英. 基于SYSWELD的三维瞬态GTAW温度场与应力场的有限元分析. 硕士学位论文, 中国石油大学, 2008.
22 Wu C S. Manufacturing Technology and Machine Tool, 2008(7), 1.
武传松. 制造技术与机床, 2008(7), 1.
23 Zhang W Y. Welding metallurgy: basic principles, Machinery Industry Press, China, 1995.
张文钺. 焊接冶金学: 基本原理, 机械工业出版社, 1995.
24 Wang B S, Kong L, Wang M, et al. Electric Welding Machine, 2021, 51(4), 14 (in Chinese).
王博士, 孔谅, 王敏, 等. 电焊机, 2021, 51(4), 14.
25 Chen B, Zhang H T, Wang H, et al. Hot Working Technology, 2022(1), 140 (in Chinese).
陈兵, 张海涛, 王鹤, 等. 热加工工艺, 2022(1), 140.
26 He C H, Feng X. Chemical principles, Science Press, China, 2001, pp. 190 (in Chinese).
何潮洪, 冯霄.化工原理, 科学出版社, 2001, pp. 190.
27 Wu H, Chang Y L, Mei Q, et al. The International Journal of Advanced Manufacturing Technology, 2019, 104, 1.
28 Diao L Y. Numerical simulation and experimental research on laser welding of thick plate high strength steel. Master's Thesis, Southwest Jiaotong University, China, 2018 (in Chinese).
刁露阳. 厚板高强钢激光焊接数值模拟与试验研究. 硕士学位论文, 西南交通大学, 2018.
29 Zhao S J, Qi W J, Huang Y H, et al. Surface Technology, 2020, 49(2), 301(in Chinese).
赵盛举, 祁文军, 黄艳华, 等. 表面技术, 2020, 49(2), 301.
30 Liu N. Study on hardfacing technology of TC4 titanium alloy TIG wire filling. Master's Thesis, Harbin Institute of Technology, China, 2013(in Chinese).
刘宁. TC4钛合金TIG填丝堆焊成型技术研究.硕士学位论文, 哈尔滨工业大学, 2013.
31 Ahmed T, Rack H J. Materials Science and Engineering: A, 1998, 243(1), 206.
32 Fang N W, Guo E J, Huang R S, et al. Materials Research Express, 2021, 8(1).
33 Philip J T, Mathew J, Kuriachen B. Friction, 2019, 7(6), 40.
34 Shen C, Feng Q, Wang S Q, et al. Materials Reports, 2021, 35(S2), 452(in Chinese).
沈楚, 冯庆, 王思琦, 等. 材料导报, 2021, 35(S2), 452.
[1] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[2] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[3] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[4] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[5] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[6] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[7] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[8] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[9] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[10] 陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
[11] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[12] 杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
[13] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[14] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[15] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed