Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21070095-7    https://doi.org/10.11896/cldb.21070095
  金属与金属基复合材料 |
Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究
黄仁君1, 闫二虎1,2,*, 陈运灿1, 葛晓宇1, 程健1, 王豪1, 刘威1, 褚海亮1, 邹勇进1, 徐芬1, 孙立贤1,*
1 桂林电子科技大学广西信息材料重点实验室,广西 桂林 541004
2 中南大学粉末冶金国家重点实验室,长沙 410083
Microstructure and Corrosion Resistance of Nb-Ti-Fe Alloy and Its Microhardness Before and After Hydrogen Treatment
HUANG Renjun1, YAN Erhu1,2,*, CHEN Yuncan1, GE Xiaoyu1, CHENG Jian1, WANG Hao1, LIU Wei1, CHU Hailiang1, ZOU Yongjin1, XU Fen1, SUN Lixian1,*
1 Guangxi Key Laboratory of Information Laboratory, Guilin University of Electronic Technology, Guilin 541004,Guangxi, China
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 24868KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Nb-Ti-Fe滤氢合金膜具有高的氢渗透性能和价格较低的优势而受到广泛关注。然而,截至目前,关于该合金膜耐腐蚀性能的研究较少有人报道,合金组织和耐腐蚀性能之间的关系尚未建立。基于此,本工作对Nb-Ti-Fe氢分离合金的显微组织、耐腐蚀性能和置氢前后显微硬度开展了一系列研究。研究结果表明:Nb10Ti50+xFe40-x和Nb15Ti45+xFe40-x (x=0, 5, 10, 15)两组合金中,当x<10,合金显微组织由初生α-Nb相和共晶(α-Nb+TiFe)相构成,当x>10,合金显微组织中初生相为TiFe相。当x=10时,少量的初生α-Nb相存在于Nb10Ti60Fe30中,但该相在Nb15Ti55Fe30合金中消失,取而代之的是共晶(α-Nb+TiFe)相。其次,上述合金经电化学腐蚀后,表面生成一层极薄的氧化物覆盖层,组分为Nb2O5、TiO2、Nb2C和Fe2O3,腐蚀性能与相种类、成分紧密相关,Nb10Ti65Fe25合金(4#)的耐腐蚀性能较强,含有FeNb相较多的Nb15Ti45Fe40合金(5#)耐腐蚀性能最低。另外,上述合金的置氢性能随着Ti/Fe原子比的增加而逐渐提高,相反,其维氏硬度值先降低而后增加,合金的平均硬度值分布在520HV~570HV之间,且组织中各相显微硬度值排列顺序由小到大为共晶(α-Nb+TiFe)、 TiFe、 α-Nb、 FeNb,置氢后合金硬度降低原因是氢原子的引入促进位错增殖以及促使双扭折形核造成内部缺陷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄仁君
闫二虎
陈运灿
葛晓宇
程健
王豪
刘威
褚海亮
邹勇进
徐芬
孙立贤
关键词:  Nb-Ti-Fe合金  显微组织  耐腐蚀性能  置氢  显微硬度    
Abstract: Nb-Ti-Fe hydrogen filtration alloy membrane has been widely paid attention because of its high hydrogen permeability and low price. However, up to now, there are few reports on the corrosion resistance of the alloy film, and the relationship between the microstructure and corrosion resistance of the alloy has not been established. Based on this, the microstructure, corrosion resistance and microhardness of Nb-Ti-Fe hydrogen separation alloy before and after hydrogen treatment were studied in this work. The results show that:in the two groups of Nb10Ti50+xFe40-x and Nb15Ti45+xFe40-x (x=0, 5, 10, 15) alloys, the microstructure of the alloy is composed of primary α-Nb phase and eutectic (α-Nb+TiFe) phase when x<10, while the primary phase is phase TiFe when x>10. When x=10, a small amount of primary α-Nb phase exists in Nb10Ti60Fe30, but this phase disappears in Nb15Ti55Fe30 alloy and is replaced by eutectic (α-Nb+TiFe) phase. Secondly, an extremely thin oxide covering layer is formed on the surface of the alloy after electrochemical corrosion, which is divided into Nb2O5, TiO2, Nb2C and Fe2O3. The corrosion performance is closely related to the type and composition of the phase. The corrosion resistance of Nb10Ti65Fe25alloy (4#) is strong. The Nb15Ti45Fe40 alloy (5#) with more FeNb has the lowest corrosion resistance. In addition, the hydrogen-loading properties of the alloys are gradually improved with the increase of Ti/Fe atomic ratio. On the other hand, the Vickers hardness values decrease first and then increase. The average hardness values of the alloys are distributed between 520HV—570HV. The microhardness values of each phase in the structure are eutectic (α-Nb+TiFe), TiFe, α-Nb, FeNb from small to large. The reason for the decrease in hardness of the alloy after hydrogen implantation is that the introduction of hydrogen atoms promotes dislocation proliferation and promotes double kink nucleation, resulting in internal defects.
Key words:  Nb-Ti-Fe alloy    microstructure    corrosion resistance    hydrogen placement    microhardness
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TG139  
基金资助: 国家自然科学基金 (52161034);国家重点研发计划 (2018YFB1502103);广西自然科学基金 (2019JJA160006);桂林电子科技大学研究生教育创新计划 (2021YCXS155; 2019YCXS109);广西八桂学者基金、中德国际合作项目 (GZ1528);广西信息材料重点实验室基金 (211012-Z)
通讯作者:  * 闫二虎,桂林电子科技大学教授、硕士研究生导师。2009年7月本科毕业于河北科技大学,2011年7月和2014年7月在哈尔滨工业大学分别取得工学硕士学位和工学博士学位,毕业后在桂林电子科技大学工作。2018年11月至2019年11月获广西高校优秀教师出国留学深造项目资助赴加拿大国家科学研究院信息-能源材料研究所进行为期1年的访学研究工作。主要从事合金定向凝固理论和新型能源材料方面的研究,主要包含相图热力学计算、多相合金凝固行为和新型渗氢/储氢性能的研究。近五年来在Journal of Membrane Science、Journal of Alloys and Compounds、International Journal of Hydrogen Energy、Journal of Crystal Growth、International Journal of Materials Research、《金属学报》等刊物上发表SCI文章 60余篇,申请专利10余项。yeh@guet.edu.cn
孙立贤,桂林电子科技大学教授、博士研究生导师,1994年获湖南大学理学博士学位(师从俞汝勤院士);1995.2—1995.4任日本产业技术综合研究所客座研究员 (STA);1995.5—1996.10获洪堡基金(AvH)资助在德国耶拿大学无机分析化学研究所进行合作研究;1996.10—2002.9任日本工业技术院特别研究员(AIST)/产业技术研究员(NEDO);曾任湖南农业大学分析室主任和湖南师范大学副教授;曾任大连化学物理研究所航天催化与新材料研究室材料热化学课题组组长、研究员、博士研究生导师,大连理工大学、暨南大学、湘南学院兼职教授,桂林电子科技大学“八桂学者”。在Energy & Environmental Science、Journal of Materials Chemistry A、Biosensors & Bioelectronics、Crystal Growth & Design、Journal of Physical Chemistry C、Dalton Transactions、International Journal of Hydrogen Energy等国内外重要学术刊物发表学术论文330余篇(其中SCI、EI收录300余篇)。sunlx@guet.edu.cn   
作者简介:  黄仁君,2018年6月毕业于哈尔滨理工大学,获得无机非金属材料工程工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生,在闫二虎研究员的指导下进行研究,目前主要研究领域为新型渗氢合金。
引用本文:    
黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
HUANG Renjun, YAN Erhu, CHEN Yuncan, GE Xiaoyu, CHENG Jian, WANG Hao, LIU Wei, CHU Hailiang, ZOU Yongjin, XU Fen, SUN Lixian. Microstructure and Corrosion Resistance of Nb-Ti-Fe Alloy and Its Microhardness Before and After Hydrogen Treatment. Materials Reports, 2023, 37(7): 21070095-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070095  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21070095
1 Ge X Y, Yan E H, Chen Y C, et al. Materials Reports, 2022, 36(18), 21060218 (in Chinese).
葛晓宇, 闫二虎, 陈运灿, 等. 材料导报, 2022, 36(18), 21060218.
2 Sun Y, Su W, Zhou L. Hydrogen fuel, Chemical Industry Press, China, 2005, pp.1 (in Chinese).
孙艳, 苏伟, 周理. 氢燃料, 化学工业出版社, 2005, pp.1,
3 Di C B, Wang J H, Yan E H, et al. Materials Reports, 2021, 35(18),18109(in Chinese).
狄翀博, 王金华, 闫二虎, 等. 材料导报, 2021, 35(18), 18109.
4 Pati S, Jat R A, Anand N S, et al. Journal of Membrane Science, 2017, 522, 151.
5 Li H, Carvella A, Xu H Y. Journal of Materials Chemistry A, 2016, 4, 14069.
6 Piskin F, Akyildiz H, Öztürk H. International Journal of Hydrogen Energy, 2015, 40, 7553.
7 Lopez A, Melendez M J, Collins V. International Journal of Hydrogen Energy, 2016, 41, 23363.
8 Hashi K, Ishikawa K, Matasuda T, et al. Journal of Alloys and Compounds, 2004, 368, 215.
9 Dolan M D, Kellam M E, Mclenan K G, et al. International Journal of Hydrogen Energy, 2013, 38, 9794.
10 Magnone E, Jeon S, Parak J H, et al. Journal of Membrane Science, 2011, 384, 136.
11 Ishikawa K, Watanabe S, Aoki K. Journal of Alloys and Compounds, 2013, 566, 68.
12 Ishikawa K, Takano T, Matsuda T, et al. Applied Physics Letters, 2005, 87(8), 315.
13 Kamakpto P, Sholl D S. Journal of Membrane Science, 2006, 279, 94.
14 Erhu Yan, Yuncan Chen, Kexiang Zhang, et al. Separation and Purification Technology, 2021, 257, 117945.
15 Yan E H, Huang H R, Sun S H, et al. Journal of Membrane Science, 2018, 565, 411.
16 Amano M, Nishimura C, Komaki M. Materials Transactions, 1990, 31(5), 404.
17 Li A, Liang W, Hughes R. Journal of Membrane Science, 2000, 165(1), 135.
18 Hulme J, Komaki M, Nishimura C, et al. Current Applied Physics, 2011, 11, 972.
19 Hou K, Hughes R. Journal of Membrane Science, 2002, 206(1-2), 119.
20 Yang J Y, Nishimura C, Komaki M. Journal of Membrane Science, 2008, 309(1-2), 246.
21 Song D W, Wang Y J, Liu Y, et al. Journal of Rare Earths, 2008, 26, 398.
22 Jin Z H, Ge H H, Lin W W, et al. Applied Surface Science, 2014, 322, 47.
23 Losiewicz B, Kubisztal J. International Journal of Hydrogen Energy, 2018, 43, 20004.
24 Zhao J W. Influence of thermo hydrogen treatment on microstructural evolution and high temperature deformation behavior of titanium alloys. Ph. D. Thesis, Northeastern University, China, 2009(in Chinese).
赵敬伟. 热氢处理对钛合金组织演变及高温变形行为的研究. 博士学位论文, 东北大学, 2009.
25 Ding X, Yang F L, Hu J Z, et al. Materials Reports B:Research Papers, 2012, 26(12), 1 (in Chinese).
丁珣, 杨伏良, 胡建中, 等. 材料导报:研究篇, 2012, 26(12), 1.
26 Jiang Z, Li P, Yuan B G, et al. Rare Metal Materials and Engineering, 2013, 42(6), 1190.(in Chinese).
江政, 李萍, 袁宝国, 等. 稀有金属材料与工程, 2013, 42(6), 1190.
27 Chu W Y. Hydrogen damage and hysteretic fracture, Beijing:Metallurgical Industry Press, China, 1998, pp.25(in Chinese).
褚武扬. 氢损伤和滞后断裂, 北京:冶金工业出版社, 1998, pp.25.
[1] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[2] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[3] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[4] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[5] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[6] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[7] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[8] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[9] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[10] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[11] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[14] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[15] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed