REVIEW PAPER |
|
|
|
|
|
Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review |
Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU
|
Beijing Institute of Aeronautical Materials, Beijing 100095 |
|
|
Abstract Infrared detector device is the core parts of the modern military weapons target recognition, and the performance of the infrared detection material will directly decide the performance of the device level. The research progress of two typical materials of infrared detection applied under low temperature is reviewed. Based on the classification standard of the scale of the infrared material, the direct semiconductor of HgCdTe with narrow bandgap and the infrared material based on the quantum effects are both introduced. Meanwhile, the current problems existing in the research of infrared detection materials and the future development direction are proposed as well.
|
Published: 10 February 2018
|
|
|
|
|
低维红外材料器件结构示意图:(a)量子阱红外探测器;(b)Ⅱ型超晶格红外探测器; (c)量子线红外探测器;(d)量子点红外探测器[1,54-56]
|
|
低维红外材料器件结构示意图:(a)量子阱红外探测器;(b)Ⅱ型超晶格红外探测器; (c)量子线红外探测器;(d)量子点红外探测器[1,54-56]
|
|
红外探测器发展的三个阶段及其各个阶段的结构示意图[5,9]
|
|
低维红外材料器件结构示意图:(a)量子阱红外探测器;(b)Ⅱ型超晶格红外探测器; (c)量子线红外探测器;(d)量子点红外探测器[1,54-56]
|
|
低维红外材料器件结构示意图:(a)量子阱红外探测器;(b)Ⅱ型超晶格红外探测器; (c)量子线红外探测器;(d)量子点红外探测器[1,54-56]
|
|
低维红外材料器件结构示意图:(a)量子阱红外探测器;(b)Ⅱ型超晶格红外探测器; (c)量子线红外探测器;(d)量子点红外探测器[1,54-56]
|
|
低维红外材料器件结构示意图:(a)量子阱红外探测器;(b)Ⅱ型超晶格红外探测器; (c)量子线红外探测器;(d)量子点红外探测器[1,54-56]
|
1 | Chen C S, Liu R T, Liu S H . New development of infrared detector[J]. Journal of Atmospheric and Environmental Optics, 2013,8(1):1(in Chinese). | 1 | 陈长水, 刘荣挺, 刘颂豪 . 红外探测器的最新进展[J]. 大气与环境光学学报, 2013,8(1):1. | 2 | Vishnyakov A V, Stuchinsky V A, Brunev D V , et al. Analysis of charge-carrier diffusion in the photosensing films of HgCdTe infrared focal plane array photodetectors[J]. Journal of Applied Physics, 2015,118(12):124508. | 3 | Gong H M, Liu D F . Developments and trends in spaceborne infrared detectors[J]. Infrared and Laser Engineering, 2008,37(1):18(in Chinese). | 3 | 龚海梅, 刘大福 . 航天红外探测器的发展现状与进展[J]. 红外与激光工程, 2008,37(1):18. | 4 | Dong X L, Mao C L, Yao C H , et al. Progress of research on the pyroelectric ceramic materials for uncooled infrared detectors[J]. Infrared and Laser Engineering, 2008,37(1):37(in Chinese). | 4 | 董显林, 毛朝梁, 姚春华 , 等. 非制冷红外探测器用热释电陶瓷材料研究进展[J]. 红外与激光工程, 2008,37(1):37. | 5 | Rogalski A, Antoszewski J, Faraone L , et al. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009,105(9):091101. | 6 | Rogalski A . Toward third generation HgCdTe infrared detectors[J]. Journal of Alloys and Compounds, 2004,371(1):53. | 7 | Wang G W, Xu Y Q, Niu Z C . Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Challenges and solutions[J]. Scientia Sinica Physica Mechainica & Astronomica, 2014,44(4):368(in Chinese). | 7 | 王国伟, 徐应强, 牛智川 . 新型低维结构锑化物红外探测器的研究与挑战[J]. 中国科学:物理学力学天文学, 2014,44(4):368. | 8 | Kinch M A . HgCdTe: Recent trends in the ultimate IR semiconductor[J]. Journal of Electronic Materials, 2010,39(7):1043. | 9 | Guo R P, Li J, Sun B S . New development of foreign infrared detector material technology[J]. Ordnance Material Science and Enginee-ring, 2009,32(3):96(in Chinese). | 9 | 郭瑞萍, 李静, 孙葆森 . 国外红外探测器材料技术新进展[J]. 兵器材料科学与工程, 2009,32(3):96. | 10 | Piotrowski J, Gawron W . Ultimate performance of infrared photodetectors and figure of merit of detector material[J]. Infrared Physics & Technology, 1997,38(2):63. | 11 | Colombo L, Chang R R, Chang C J , et al. Growth of Hg-based alloys by the traveling heater method[J]. Journal of Vacuum Science Technology, 1988,A6(4):2795. | 12 | Norton P . HgCdTe infrared detectors[J]. Opto-Electronics Review, 2002,10(3):159. | 13 | Radhakrishnan J K, Sitharaman S, Gupta S C . Surface morphology of Hg0.8Cd0.2Te epilayers grown by LPE using horizontal slider[J]. Applied Surface Science, 2003,207:33. | 14 | Wilson J A, Patten E A, Chapman G R , et al. Integrated two-color detection for advanced focal plane array (FPA) applications[J]. Proceeding of SPIE, 1994,2274:117. | 15 | Rais M H, Musca C A, Dell J M , et al. HgCdTe photovoltaic detectors fabricated using a new junction formation technology[J]. Microelectronics Journal, 2000,31(7):545. | 16 | Bevan M J, Chen M C, Shih H D . High-quality p-type Hg1-xCdxTe prepared by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1995,67(23):3450. | 17 | Peterson J M, Franklin J A, Readdy M , et al. High-quality large-area MBE HgCdTe/Si[J]. Journal of Electronic Materials, 2006,35(6):1283. | 18 | Bornfreund R, Rosbeck J P, Thai Y N , et al. High-performance LWIR MBE-grown HgCdTe/Si focal plane arrays[J]. Journal of Electronic Materials, 2007,36(8):1085. | 19 | Radford W A, Patten E A, King D F , et al. Third generation FPA development status at raytheon vision systems[J]. Proceeding of SPIE, 2005,5783:331. | 20 | Smith E P G, Patten E A, Goetz P M , et al. Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors[J]. Journal of Electronic Materials, 2006,35(6):1145. | 21 | Simingalam S, Vanmil B L, Chen Y P , et al. Development and fabrication of extended short wavelength infrared HgCdTe sensors grown on CdTe/Si substrates by molecular beam epitaxy[J]. Solid-State Electronics, 2014,101:90. | 22 | Bommena R, Ketharanathan S, Wijewarnasuriya P S , et al. High-performance MWIR HgCdTe on Si substrate focal plane array deve-lopment[J]. Journal of Electronic Materials, 2015,44(9):3151. | 23 | Selvig E, Tonheim C R, Kongshaug K O , et al. Defects in HgTe grown by molecular beam epitaxy on (211)B-oriented CdZnTe substrates[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 2007,25(6):1776. | 24 | Selvig E, Tonheim C R, Kongshaug K O , et al. Defects in CdHgTe grown by molecular beam epitaxy on (211)B-oriented CdZnTe substrates[J]. Journal of Vacuum Science & Technology B, 2008,26(2):525. | 25 | Selvig E, Tonheim C R, Lorentzen T , et al. Defects in HgTe and CdHgTe grown by molecular beam epitaxy[J]. Journal of Electronic Materials, 2008,37(9):1444. | 26 | Haakenaasen R, Selvig E, Tonheim C R , et al. HgCdTe research at FFI: Molecular beam epitaxy growth and characterization[J]. Journal of Electronic Materials, 2010,39(7):893. | 27 | Haakenaasen R, Steen H, Selvig E , et al. Imaging photovoltaic infrared CdHgTe detectors[J]. Physica Scripta, 2006,2006(T126):31. | 28 | Haakenaasen R, Steen H, Lorentzen T , et al. Planar n-on-p ion milled mid-wavelength and long-wavelength infrared diodes on molecular beam epitaxy vacancy-doped CdHgTe on CdZnTe[J]. Journal of Electronic Materials, 2002,31(7):710. | 29 | Haakenaasen R, Steen H, Selvig E , et al. Imaging one-dimensional and two-dimensional planar photodiode detectors fabricated by ion milling molecular beam epitaxy CdHgTe[J]. Journal of Electronic Materials, 2005,34(6):922. | 30 | Chen L, Fu X L, Wang W Q , et al. Progress on HgCdTe MBE for the application of IRFPAs[J]. Scicentia Sinica Physica Mechanica & Astronomica, 2014,4(44):341(in Chinese). | 30 | 陈路, 傅祥良, 王伟强 , 等. 面向HgCdTe红外焦平面探测器应用的分子束外延材料研究进展[J]. 中国科学:物理学力学天文学, 2014,4(44):368. | 31 | Mitra P, Case F C, Reine M B , et al. Progress in MOVPE of HgCdTe for advanced infrared detectors[J]. Journal of Electronic Materials, 1998,27(6):510. | 32 | Reine M B, Hairston A , O’Dette P, et al. Simultaneous MW/LW dual-band MOVPE HgCdTe 64 × 64 FPAs[J]. Proceeding of SPIE, 2008,3379:200. | 33 | Maxey C D, Camplin J P, Guilfoy I T , et al. Metal-organic vapor-phase epitaxial growth of HgCdTe device heterostructures on three-inch-diameter substrates[J]. Journal of Electronic Materials, 2003,32(7):656. | 34 | Piotrowski A, Madejczyk P, Gawron W , et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors[J]. Infrared Physics & Technology, 2007,49(3):173. | 35 | Khatei J, Pendyala N B , Rao K S R K. Solvothermal synjournal of Hg1-xCdxTe nanostructures-their structural and optical properties[J]. Journal of Alloys and Compounds, 2011,509(13):4632. | 36 | Selvig E, Hadzialic S, Skauli T , et al. Growth of HgTe nanowires[J]. Physica Scripta, 2006,2006(T126):115. | 37 | Haakenaasen R, Selvig E, Foss S , et al. Segmented nanowires of HgTe and Te grown by molecular beam epitaxy[J]. Applied Physics Letters, 2008,92(13):133108. | 38 | Haakenaasen R, Selvig E, Hadzialic S , et al. Nanowires in the Cd-HgTe material system[J]. Journal of Electronic Materials, 2008,37(9):1311. | 39 | Shao J, Lü X, Guo S L , et al. Impurity levels and bandedge electronic structure in as-grown arsenic-doped HgCdTe by infrared photoreflectance spectroscopy[J]. Physical Review B, 2009,15(80):155125. | 40 | Chang Y, Grein C H, Zhao J , et al. Carrier recombination lifetime characterization of molecular beam epitaxially grown HgCdTe[J]. Applied Physics Letters, 2008,93(19):192111. | 41 | 褚君浩 . 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005. | 42 | Shao J, Yue F Y, Lü X , et al. Photomodulated infrared spectroscopy by a step-scan fourier transform infrared spectrometer[J]. Applied Physics Letters, 2006,89(18):182121. | 43 | Shao J, Lü X, Lu W , et al. Cutoff wavelength of Hg1-xCdxTe epilayers by infrared photoreflectance spectroscopy[J]. Applied Phy-sics Letters, 2007,90(17):171101. | 44 | Shao J, Chen L, Lu W , et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs[J]. Applied Physics Letters, 2010,96(12):121915. | 45 | Martyniuk P, Antoszewski J, Martyniuk M , et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews, 2014,1(4):041102. | 46 | Sakimoto K K, Wong A B, Yang P D . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016,351(6268):74. | 47 | Zhang Y H, Ma W Q, Wei Y , et al. Long wavelength, very long wavelength and narrow-band long-/very-long wavelength two-color type-Ⅱ InAs/GaSb superlattice photodetectors[J]. Scientia Sincia Physica Mechanica & Astronomica, 2014,4(44):390(in Chinese). | 47 | 张艳华, 马文全, 卫炀 , 等. 长波和甚长波及其双色InAs/GaSb二类超晶格红外探测器的研究进展[J]. 中国科学:物理学力学天文学, 2014,4(44):390. | 48 | Levine B F . Quantum-well infrared photodetectors[J]. Journal of Applied Physics, 1993,74(8):1. | 49 | Haugan H J, Szmulowicz F, Brown G J , et al. Band gap tuning of InAs/GaSb type-Ⅱ superlattices for mid-infrared detection[J]. Journal of Applied Physics, 2004,96(5):2580. | 50 | Das B, Singaraju P . Novel quantum wire infrared photodetectors[J]. Infrared Physics and Technology, 2005,46(3):209. | 51 | Germann T D, Strittmatter A, Pohl J , et al. High-power semiconductor disk laser based on InAs/GaAs submonolayer quantum dots[J]. Applied Physics Letters, 2008,92(10):101123. | 52 | Ting D Z, Soibel A, Rafol S B , et al. Development of quantum well, quantum dot, and type Ⅱ superlattice infrared photodetectors[J]. Journal of Applied Remote Sensing, 2014,8(1):084998 | 53 | Rogalski A . InAs1-xSbx in frared detectors[J]. Progress in Quantum Electronics, 1989,13(3):191. | 54 | Xing W R, Li J . Recent progress of quantum well infrared photodetectors[J]. Laser & Infrared, 2013,43(2):144(in Chinese). | 54 | 邢伟荣, 李杰 . 量子阱红外探测器最新进展[J]. 激光与红外, 2013,43(2):144. | 55 | Nasr A, Aboshosha A , AlAdl S M. Dark current characteristics of quantum wire infrared photodetectors[J]. IET Optoelectronics, 2007,3(1):140. | 56 | Jia Y N, Xu B, Wang Z G . Research progress on quantum dot infrared photodetectors[J]. Semiconductor Optoelectronics, 2012,33(3):314(in Chinese). | 56 | 贾亚楠, 徐波, 王占国 . 量子点红外探测器的研究进展[J]. 半导体光电, 2012,33(3):314. | 57 | Rogalski A . Recent progress in third generation infrared detectors[J]. Journal of Modern Optics, 2010,57(18):1716. | 58 | Gunapala S D, Bandara S V, Liu J K , et al. 1024×1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications[J]. Semiconductor Science Technology 2005,20(5):473. | 59 | Razeghi M, Nguyen B M . Band gap tunability of type Ⅱ antimonide-based superlattices[J]. Physics Procedia, 2010,3(2):1207. | 60 | Haddadi A, Ramezani-Darvish S, Chen G X , et al. High operability 1024×1024 long wavelength type-Ⅱ superlattice focal plane array[J]. IEEE Journal Quantum Electronics, 2012,48(2):221. | 61 | Phillips J, Kamath K, Brock T , et al. Characteristics of InAs/AlGaAs self-organized quantum dot modulation doped field effect transistors[J]. Applied Physics Letters, 1998,72(26):3509. | 62 | Bhattacharya P, Mi Z . Quantum-dot optoelectronic devices[J]. Proceeding of the IEEE, 2007,95(9):1723. | 63 | Campbell J C, Madhukar A . Quantum-dot infrared photodetectors[J]. Proceeding of the IEEE, 2007,95(9):1815. | 64 | Crouse D, Crouse M, Mahapatra S , et al. Ⅱ-Ⅵ semiconductor quantum wire fabrication and application to IR detection[J]. NSTI-Nanotechnology, 2006,3:117. | 65 | Tsai C L, Cheng K Y, Chou S T . InGaAs quantum wire infrared photodetector[J]. Applied Physics Letters, 2007,91(18):181105. | 66 | Ting D Z, Hill C J, Soibel A , et al. Antimonide-based barrier infrared detectors[J]. Proceeding of SPIE, 2010,7660:56. | 67 | El_tokhy M S, Mahmoud I I, Konber H A , et al. Comparison stu-dies of infrared photodetectors with a quantum-dot and a quantum-wire base[J]. Opto-Electronics Review, 2011,19(4):405. |
|
|
|
|