REVIEW PAPER |
|
|
|
|
|
Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks |
Yunzi LIU,Wei ZHANG,Zhanyong SONG
|
Army Academy of Armord Force, Beijing 100072 |
|
|
Abstract Printed electronics technology is a low-cost laconic and environment-friendly manufacturing technology of electro-nics, which exhibits tremendous potential in many fields, such as flexible electron devices manufacturing. Recently, conductive inks as the key material of the fast development in printed electronics have been paid much attention and reported a lot in academic community. Combining the applied and development status of printed electronics, this article summarizes the performance indexes and their mechanism of nanoparticles-based conductive inks, reviews the research advance of preparation and posterior treatment techno-logies of nanoparticles-based conductive inks, puts emphasis on part of the potential advanced technologies, and analyzes their preponderance, boundedness and development direction. In the end, several views according to the current problems in development of printed electronics are put forward.
|
Published: 10 February 2018
|
|
|
|
|
印刷电子的应用领域[10]
|
|
金属丝脉冲放电法制备铜-银核-壳结构双金属纳米颗粒示意图[40]
|
|
金属丝脉冲放电法制备铜-银核-壳结构双金属纳米颗粒示意图[40]
|
|
印刷涂层中银纳米颗粒在60 ℃下经不同浓度HCl烧结处理的ESEM图像和粒径分布图[48]
|
1 | Khan S, Lorenzelli L, Dahiya R S . Technologies for printing sensors and electronics over large flexible substrates: A review[J]. IEEE Sensors Journal, 2015,15(6):3164. | 2 | Seekaew Y, Lokavee S, Phokharatkul D , et al. Low-cost and flexible printed graphene-PEDOT∶PSS gas sensor for ammonia detection[J]. Organic Electronics, 2014,15(11):2971. | 3 | Pierre A, Sadeghi M, Payne M M , et al. All-printed flexible organic transistors enabled by surface tension-guided blade coating[J]. Advanced Materials, 2014,26(32):5722. | 4 | Zou S, Hamilton M C. Ink-jet printed Cu/CuxO/Ag ReRAM memory devices fabricated on flexible substrate [C]∥Proceedings of IEEE 64th Electronic Components and Technology Conference.Lake Buena Vista,US, 2014. | 5 | Cui Z . Status and prospects of the printed electronics industry in China[J].Printed Electronics,2013(12):4(in Chinese). | 5 | 崔铮 . 中国印刷电子产业现状与前景展望[J].印制电子技术,2013(12):4. | 6 | 崔铮 . 印刷电子学[M]. 北京: 高等教育出版社, 2010. | 7 | Rao R V K, Abhinav K V, Karthik P S , et al. Conductive silver inks and their applications in printed and flexible electronics[J]. RSC Advances, 2015,5:77760. | 8 | Eun K, Chon M W, Yoo T H , et al. Electromechanical properties of printed copper ink film using a white flash light annealing process for flexible electronics[J]. Microelectronics Reliability, 2015,55(5):838. | 9 | ?hlund T, Schuppert A K, Hummelg?rd M , et al. Inkjet fabrication of copper patterns for flexible electronics: Using paper with active precoatings[J]. ACS Applied Materials & Interfaces, 2015,7(33):18273. | 10 | Nathan A, Ahnood A, Cole M T , et al. Flexible electronics: The next ubiquitous platform[J]. Proceedings of the IEEE, 2012,100(5):1486. | 11 | Wang M A . Study on the preparation and application of metal nano-particles-based conductive inks[D]. Hangzhou:Zhejiang University, 2016(in Chinese). | 11 | 王明昂 . 纳米金属颗粒的制备及应用研究[D]. 杭州:浙江大学, 2016. | 12 | Zhang K L, Du Y G . Review of conductive silver inks for inkjet printing[J]. Precious Metals, 2014,35(4):80(in Chinese). | 12 | 张楷力, 堵永国 . 喷墨打印中的银导电墨水综述[J]. 贵金属, 2014,35(4):80. | 13 | Cui S Y, Liu J, Wu W . Preparation of metal nanoparticle-based conductive inks and their applications in printed electronics[J]. Progress in Chemistry, 2015,27(10):1509(in Chinese). | 13 | 崔淑媛, 刘军, 吴伟 . 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015,27(10):1509. | 14 | Harra J, M?kitalo J, Siikanen R , et al. Size-controlled aerosol synjournal of silver nanoparticles for plasmonic materials[J]. Journal of Nanoparticle Research, 2012,14(6):1. | 15 | Kassavetis S, Kaziannis S, Pliatsikas N , et al. Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation[J]. Applied Surface Science, 2015,336:262. | 16 | Guozhong Cao, Ying Wang. 纳米结构和纳米材料:合成、性能及应用[M]. 董星龙, 译.北京:高等教育出版社, 2012. | 17 | Guzmán M G, Dille J, Godet S . Synjournal of silver nanoparticles by chemical reduction method and their antibacterial activity[J]. Proceedings of World Academy of Science Engineering & Technolog, 2009,33(3):367. | 18 | Chien Dang M , Dung Dang T M, Fribourgblanc E. Silver nanoparticles ink synjournal for conductive patterns fabrication using inkjet printing technology[J]. Advances in Natural Sciences Nanoscience & Nanotechnology, 2014,6(1):1. | 19 | Shen W, Zhang X, Huang Q , et al. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity[J]. Nanoscale, 2014,6(3):1622. | 20 | Bar H, Bhui D K, Sahoo G P , et al. Green synjournal of silver nanoparticles using latex of Jatropha curcas[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009,339(1):134. | 21 | Elumalai E K, Kayalvizhi K, Silvan S . Coconut water assisted green synjournal of silver nanoparticles[J]. Journal of Pharmacy & Bioallied Sciences, 2014,6(4):241. | 22 | Pai G, Dayal N, Shettigar C D , et al. Microwave assisted biosynjournal of silver nanoparticles by aqueous extract of ocimum sanctum (Tulsi)[J]. MGM Journal of Medical Sciences, 2014,1(3):117. | 23 | Rao R V K, Abhinav K V, Karthik P S , et al. Conductive silver inks and their applications in printed and flexible electronics[J]. RSC Advances, 2015,5:77760. | 24 | 徐滨士 . 纳米表面工程[M]. 北京: 化学工业出版社, 2003. | 25 | Ervin M H, Le L T, Lee W Y . Inkjet-printed flexible graphene based supercapacitors[J]. Electrochimica Acta, 2013,147:610. | 26 | Christenson K K, Paulsen J A, Renn M J, et al. Direct printing of circuit boards using aerosol jet [C]∥Proceedings of 27th Internatio-nal Conference on Digital Printing Technologies.Minneapolis,US, 2011. | 27 | Blumenthal T, Fratello V, Nino G, et al. Conformal printing of sensors on 3D and flexible surfaces using aerosol jet deposition [C]∥Proceedings of Conference on Nanosensors, Biosensors, and Info-Tech Sensors and Systems.San Diego,US, 2013. | 28 | Li J, Cheng T . Comprehensive review of flexible printed electronic inkjet technology[J].Print Technology,2014(13):38(in Chinese). | 28 | 李劲, 程涛 . 柔性印刷电子喷墨技术全面解析[J].印刷技术,2014(13):38. | 29 | Park J, Moon J . Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing[J]. Langmuir, 2006,22(8):3506. | 30 | Kim D, Jeong S, Park B K , et al. Direct writing of silver conductive patterns:Improvement of film morphology and conductance bycontrolling solvent compositions[J]. Applied Physics Letters, 2006,89(26):264101. | 31 | Zhang Z, Zhang X, Xin Z , et al. Synjournal of monodisperse silver nanoparticles for ink-jet printed flexible electronics[J]. Nanotech-nology, 2011,22(42):425601. | 32 | Park B K, Kim D, Jeong S , et al. Direct writing of copper conductive patterns by ink-jet printing[J]. Thin Solid Films, 2007,515(19):7706. | 33 | Chiang T H, Wu K D, Hsieh T E . Preparation of silver nanoparticles by using tripropylene glycol as the reducing agents of polyol process[J]. IEEE Transactions on Nanotechnology, 2014,13(1):116. | 34 | Zhu J J, Kan C X, Wan J G , et al. High-yield synjournal of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process[J]. Journal of Nanomaterials, 2011,2011:40. | 35 | Karthik P S, Singh S P . Conductive silver inks and their applications in printed and flexible electronics[J]. RSC Advances, 2015,5(95):77760. | 36 | He J, Li S, Wang H , et al. Effect of caboxymethyl cellulose sodium on the properties of nano-silver conductive ink[J]. Chemical Industry and Engineering, 2012,29(4):1(in Chinese). | 36 | 何军, 李莎, 王虹 , 等. 羧甲基纤维素钠对纳米银导电墨水性能的影响[J]. 化学工业与工程, 2012,29(4):1. | 37 | Zhang X M, Zhang Z Z, Zhao F X , et al. Anti-oxidation copper nanopowders synthesized by N2H4·H2O reduction method[J]. Journal of Nanjing Tech University, 2014,36(6):118(in Chinese). | 37 | 张晓敏, 张振忠, 赵芳霞 , 等. 抗氧化纳米Cu粉的水合肼还原法制备[J]. 南京工业大学学报, 2014,36(6):118. | 38 | Jeong S, Woo K, Kim D , et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing[J]. Advanced Functional Materials, 2008,18(5):679. | 39 | Lee C, Kim N R, Koo J , et al. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics[J]. Nanotechno-logy, 2015,26(45):455601. | 40 | Kim C K, Lee G J, Lee M K , et al. A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics[J]. Powder Technology, 2014,263:1. | 41 | Li L H, Mo L X, Ran J , et al. Conducive ink and its application technology progress[J]. Imaging Science and Photochemistry, 2014,32(4):393(in Chinese). | 41 | 李路海, 莫黎昕, 冉军 , 等. 导电墨水及其应用技术进展[J]. 影响科学与光化学, 2014,32(4):393. | 42 | Moisala A, Nasibulin A G, Kauppinen E I . The role of metal nano-particles in the catalytic production of single-walled carbon nanotubes—A review[J]. ChemInform, 2004,35(3):3011. | 43 | Perelaer J, Smith P J, Mager D , et al. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials[J]. Journal of Materials Chemistry, 2010,20(39):8446. | 44 | Woo K, Bae C, Jeong Y , et al. Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors[J]. Journal of Materials Chemistry, 2010,20(19):3877. | 45 | Huang Q, Shen W, Xu Q , et al. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity[J]. Materials Chemistry & Physics, 2014,147(3):550. | 46 | Wünscher S, Stumpf S, Teichler A , et al. Localized atmospheric plasma sintering of inkjet printed silver nanoparticles[J]. Journal of Materials Chemistry, 2012,22(47):24569. | 47 | Ko S H, Pan H, Grigoropoulos C P , et al. Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles[J]. Applied Physics Letters, 2007,90(14):141103. | 48 | Wang Z, Wang W, Jiang Z , et al. Low temperature sintering nano-silver conductive ink printed on cotton fabric as printed electronics[J]. Progress in Organic Coatings, 2016,101:604. | 49 | Rager M S, Aytug T, Veith G M , et al. Low-thermal-budget photonic processing of highly conductive cu interconnects based on CuO nanoinks: Potential for flexible printed electronics[J]. ACS Applied Materials & Interfaces, 2016,8(3):2441. | 50 | ?hlund T, Schuppert A K, Hummelg?rd M , et al. Inkjet fabrication of copper patterns for flexible electronics: Using paper with activeprecoatings[J]. ACS Applied Materials & Interfaces, 2015,7:18273. | 51 | Kang H, Sowade E, Baumann R R . Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds[J]. ACS Applied Materials & Interfaces, 2014,6(3):1682. | 52 | Chung W H, Hwang H J, Kim H S . Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics[J]. Thin Solid Films, 2015,580:61. | 53 | Woo K, Kim D, Kim J S , et al. Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate[J]. Langmuir, 2008,25(1):429. | 54 | Chang W Y, Fang T H, Shen Y T , et al. Flexible electronics sensors for tactile multiscanning[J]. Review of Scientific Instruments, 2009,80(8):413. | 55 | Yuan Z , Tol R S J. Evaluating the costs of desalination and water transport[J]. Water Resources Research, 2005,41(3):69. | 56 | Turner C W, Gantz B J, Vidal C , et al. Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing[J]. Journal of the Acoustical Society of America, 2004,115(4):1729. | 57 | S?ndergaard R, H?sel M, Angmo D , et al. Roll-to-roll fabrication of polymer solar cells[J]. Materials Today, 2012,15(1-2):36. | 58 | Lewis J A, Ahn B Y . Device fabrication: Three-dimensional printed electronics[J]. Nature, 2015,518(7537):42. | 59 | Cooperstein I, Layani M, Magdassi S . 3D printing of porous structures by UV-curable O/W emulsion for fabrication of conductive objects[J]. Journal of Materials Chemistry C, 2015,3(9):2040. |
|
|
|
|