Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21050280-7    https://doi.org/10.11896/cldb.21050280
  无机非金属及其复合材料 |
粉煤灰对煤矸石混凝土界面过渡区的改性效应
邱继生1,*, 朱梦宇1, 周云仙1, 高徐军2, 李蕾蕾2
1 西安科技大学建筑与土木工程学院,西安 710054
2 中国电建集团西北勘测设计研究院有限公司,西安 710065
Modification Effect of Fly Ash on Interfacial Transition Zone of Coal Gangue Concrete
QIU Jisheng1,*, ZHU Mengyu1, ZHOU Yunxian1, GAO Xujun2, LI Leilei2
1 School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 Power China Northwest Survey Design and Research Institute Co., Ltd., Xi'an 710065, China
下载:  全 文 ( PDF ) ( 7288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了促进煤矸石在混凝土生产中的使用,考虑不同粉煤灰掺量(0%、10%、20%、30%、40%)对煤矸石混凝土(Coal gangue concrete, CGC)界面过渡区(Interfacial transition zone,ITZ)结构的影响,从宏观力学和微观力学两个尺度出发,揭示了粉煤灰对CGC的ITZ微观结构及宏观性能的改性机理。研究表明:在宏观力学上,掺加30%的粉煤灰可以提高CGC的劈裂抗拉强度。在微观力学上,加入 30%的粉煤灰能显著提高ITZ的薄弱区的硬度值,使其硬度值的分布变得较为均匀。掺加粉煤灰后CGC的ITZ厚度明显减小。这说明掺入的适量粉煤灰在CGC的ITZ上发挥了物理作用及化学作用,改变了CGC的ITZ结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱继生
朱梦宇
周云仙
高徐军
李蕾蕾
关键词:  粉煤灰  煤矸石混凝土  力学性能  界面过渡区  显微硬度  影响机理    
Abstract: In order to promote the use of coal gangue in the concrete production, the influence of different fly ash content (0%, 10%, 20%, 30%, 40%) on the structure of interfacial transition zone (ITZ) of coal gangue concrete (CGC), from two dimensions of macromechanics and micromechanics, revealed the modification mechanism of fly ash on microstructure and macroscopic properties of ITZ of CGC. Research shows that: in macroscopic mechanics, the splitting tensile strength of CGC could be improved by adding 30% fly ash. In micromechanics, 30% fly ash could significantly improve the hardness value of weak zone of ITZ, and made the hardness value became more uniform. When fly ash was added, the thickness of ITZ decreased obviously. This indicated that the appropriate fly ash has played a physicochemical role in the ITZ of CGC and changed the structure of ITZ.
Key words:  fly ash    coal gangue concrete    mechanical property    interface transition zone    microhardness    influence mechanism
发布日期:  2023-02-08
ZTFLH:  TU528  
基金资助: 国家自然科学基金青年基金(51808443);陕西省自然科学基础研究计划面上项目(2018JM5167)
通讯作者:  *邱继生,博士,西安科技大学副教授、硕士研究生导师。2003年取得山东工业大学学士学位,并分别在2006年和2011年取得华中科技大学和西安建筑科技大学工学硕士和工学博士学位。主要从事煤矸石及建筑垃圾等固废弃物的建材资源化利用研究,发表论文50余篇,其中SCI、EI检索20余篇,授权专利10余项,著作权5项;出版专著1部。   
引用本文:    
邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
QIU Jisheng, ZHU Mengyu, ZHOU Yunxian, GAO Xujun, LI Leilei. Modification Effect of Fly Ash on Interfacial Transition Zone of Coal Gangue Concrete. Materials Reports, 2023, 37(2): 21050280-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050280  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21050280
1 Laura C, Javier S, César M, et al. Cement and Concrete Composites, 2019, 99, 72.
2 Zhao S, Muhammad F, Yu L, et al. Environmental Science and Pollution Research, 2019, 26(25), 25609.
3 Liu C J, Deng X W, Liu J, et al. Construction and Building Materials, 2019, 221, 691.
4 Gao S, Zhao G H, Guo L H, et al. Construction and Building Materials, 2021, 268, 121212.
5 Hao L, Tan X R. China Coal, 2016, 42(11), 116 (in Chinese).
郝亮, 谭小蓉. 中国煤炭, 2016, 42(11), 116.
6 Zhou M, Dou Y W, Zhang Y Z, et al. Construction and Building Materials, 2019, 220, 396.
7 Duan X M. Study on microstructure and physical and mechanical properties of gangue aggregate concrete. Ph. D. Thesis, China University of Mining and Technology, China, 2014 (in Chinese).
段晓牧. 煤矸石集料混凝土的微观结构与物理力学性能研究. 博士学位论文, 中国矿业大学, 2014.
8 Wang Q, Ran K, Wang J B, et al. Concrete, 2021(8), 69 (in Chinese).
王晴, 冉坤, 王继博, 等. 混凝土, 2021(8), 69.
9 Li Y M, He Z M, Shen H B, et al. Journal of Water Resources and Water Engineering, 2019, 30(1), 176 (in Chinese).
李一鸣, 贺智敏, 沈黄冰, 等. 水资源与水工程学报, 2019, 30(1), 176.
10 Shang J L, Xing L L. Journal of Building Materials, 2013, 16(2), 217 (in Chinese).
尚建丽, 邢琳琳. 建筑材料学报, 2013, 16(2), 217.
11 Wu K, Shi H S, Xu L L, et al. Cement and Concrete Research, 2016, 79, 243.
12 Anwar H, Ahmed S, Prabir S, et al. Construction and Building Materials, DOI: 10. 1016/j. conbuildmat. 2020. 121311.
13 Lam L, Wong Y L, Poon C S. Cement and Concrete Research, 1998, 28(2), 271
14 Poon C S, Lam L, Wong Y L. Cement and Concrete Research, 2000, 30(3), 447.
15 Li H, Wang J B, Guo Q J, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2608 (in Chinese).
李恒, 王家滨, 郭庆军, 等. 硅酸盐通报, 2020, 39(8), 2608.
16 Sunayana S, Barai S V. Construction and Building Materials, 2021, 278, 1.
17 Qiu J S, Zhou Y X, Vatin N I, et al. Construction and Building Materials, 2020, 264(1), 120720.
18 Jiang Y, Dang Y D, Qian J S, et al. Journal of the Chinese Ceramic Society, 2017, 45(2), 212 (in Chinese).
蒋雁, 党玉栋, 钱觉时, 等. 硅酸盐学报, 2017, 45(2), 212.
19 Sun G W, Sun W, Zhang Y S, et al. Journal of Harbin Institute of Technology, 2011, 43(11), 110 (in Chinese).
孙国文, 孙伟, 张云升, 等. 哈尔滨工业大学学报, 2011, 43(11), 110.
20 Mehta P K, Monteiro P J M. Concrete: microstructure, properties, and materials, McGraw-Hill Education, USA, 2014.
21 Qiu J S, Yang Z L, Guan X, et al. Journal of Xi'an University of Science and Technology, 2020, 40(1), 110 (in Chinese).
邱继生, 杨占鲁, 关虓, 等. 西安科技大学学报, 2020, 40(1), 110.
[1] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[2] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[3] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[4] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[5] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[6] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[7] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[8] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[9] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[10] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[11] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[12] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[13] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[14] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[15] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed