Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090239-7    https://doi.org/10.11896/cldb.21090239
  金属与金属基复合材料 |
Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响
刘文憬1, 李元东1,2,*, 宋赵熙1, 毕广利1,2, 杨昊坤1, 曹杨婧1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学有色金属合金及加工教育部重点实验室,兰州 730050
Effect of Sr+Er Composite Modification on Microstructure,Thermal Conductivity and Mechanical Properties of AlSi10MnMg Alloy
LIU Wenjing1, LI Yuandong1,2,*, SONG Zhaoxi1, BI Guangli1,2, YANG Haokun1, CAO Yangjing1
1 State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Nonferrous Metal Alloys and Processing, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 17187KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以AlSi10MnMg为基础合金,通过添加Sr、Er的方法对合金进行复合变质处理,研究不同添加量下Sr、Er对AlSi10MnMg合金微观组织、导热性能、力学性能的影响规律,力图实现AlSi10MnMg合金导热、力学性功能一体化。结果表明:在金属型铸造工艺下,添加Sr能够有效改善合金中共晶Si形貌,在此基础上添加稀土元素Er能够在改善共晶Si形貌的同时进一步细化共晶Si。此外,Sr、Er能够细化AlSi10MnMg合金中α-Al的二次枝晶间距,进而提升合金的导热性能及力学性能。当添加0.05%Sr+0.3%Er时,合金变质效果及性能提升最显著,相比未变质的合金,其二次枝晶间距降幅达到67.3%,共晶Si长宽比降幅达到46.1%。性能方面,合金导热率提升17.4%,达到179.32 W/(m·K);磨损性能提升11.2%;抗拉强度提升34.58%,达到221.96 MPa;伸长率提升104.48%,达到15.97%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘文憬
李元东
宋赵熙
毕广利
杨昊坤
曹杨婧
关键词:  AlSi10MnMg铝合金  Sr+Er  导热性能  力学性能    
Abstract: In this work, AlSi10MnMg was used as the base alloy, and the alloy was subjected to compound modification treatment by adding Sr and Er. The influence of Sr and Er on the microstructure, thermal conductivity and mechanical properties of AlSi10MnMg alloy under different additions was studied, to realize the integration of thermal conductivity and mechanical function of AlSi10MnMg alloy. The results show that the addition of Sr can effectively improve the eutectic Si morphology of the alloy under the metal mold casting process. On this basis, the addition of rare earth element Er can improve the eutectic Si morphology and further refine the eutectic Si. In addition, Sr and Er can refine the secondary dendrite arm spacing of α-Al in the AlSi10MnMg alloy, thereby improving the thermal conductivity and mechanical properties of the alloy. Compared with the unmodified alloy, the secondary dendrite spacing decreased by 67.3%, and the eutectic Si aspect ratio decreased by 46.1%; in terms of performance, the thermal conductivity increased by 17.4% to 179.32 W/(m·K); the wear performance improved 11.2%; tensile strength increased by 34.58% to 221.96 MPa; elongation increased by 104.48% to 15.97%.
Key words:  AlSi10MnMg aluminum alloy    Sr+Er    thermal conductivity    mechanical property
发布日期:  2023-03-27
ZTFLH:  TG146.2  
基金资助: 重点研发计划资助项目(2018YFB2001800)
通讯作者:  *李元东,工学博士,兰州理工大学材料科学与工程学院教授、博士研究生导师,中国机械工程学会、铸造学会常务理事。1995年6月毕业于甘肃工业大学铸造专业,2000年6月获甘肃工业大学材料加工工程硕士学位,2005年获兰州理工大学材料加工工程博士学位。主要从事有色合金及其成形技术和理论的研究,研究领域包括铸造铝合金、镁合金和半固态成形及其凝固行为、自孕育铸造、扩散凝固、锌基合金及其复合材料、变形合金铸造成形技术、表面改性及与处理等方面。申请发明专利10余项,获授权5项。发表学术论文100多篇,其中SCI、EI收录50多篇。liyd_lut@163.com   
作者简介:  刘文憬,2019年6月于兰州理工大学技术工程学院材料成型及控制工程专业获得学士学位,现为兰州理工大学材料加工工程专业硕士研究生,在李元东教授的指导下进行研究,主要从事高导热Al-Si合金的制备与性能研究。
引用本文:    
刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
LIU Wenjing, LI Yuandong, SONG Zhaoxi, BI Guangli, YANG Haokun, CAO Yangjing. Effect of Sr+Er Composite Modification on Microstructure,Thermal Conductivity and Mechanical Properties of AlSi10MnMg Alloy. Materials Reports, 2023, 37(6): 21090239-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090239  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090239
1 Ou L M, Mao F, Qiao Y F, et al. Materials Reports, 2021, 35(8), 8103(in Chinese).
欧黎明, 毛丰, 乔永枫, 等. 材料导报, 2021, 35(8), 8103.
2 Song Y Z, Zhao Y, Wang H. Materials Engineering, 2020, 48(12), 36(in Chinese).
陈一哲, 赵越, 王辉. 材料工程, 2020, 48(12), 36.
3 Wan L, Liu R C, Deng Y L, et al. Materials Reports, 2021, 35(8), 8099(in Chinese).
万里, 刘荣超, 邓运来, 等. 材料导报, 2021, 35(8), 8099.
4 Fan B Y, Li Y D, Li X, et al. Special Casting & Nonferrous Alloys, 2021, 41(2), 168(in Chinese).
樊博阳, 李元东, 李想, 等. 特种铸造及有色合金, 2021, 41(2), 168.
5 Chen S Y, Wang H S, Fu S Y, et al. Special Casting & Nonferrous Alloys. 2022, 42(6), 749(in Chinese).
陈森煜, 王火生, 傅淑云, 等. 特种铸造及有色合金, 2022, 42(6), 749.
6 Wang X, Niu X, Kang W, et al. International Journal of Thermophysics, 2021, 42(7), 1.
7 Yuan Z H, Guo Z P, Xiong S M. Transactions of Nonferrous Metals Society of China, 2019, 29(5), 919.
8 Ding Y M, Effect of aging treatment on thermal conductivity and mechanical properties of A356 aluminum alloy modified by composite refining. Master's Thesis, Hebei University of Technology, China, 2022. (in Chinese).
丁钰明. 时效处理对复合细化变质A356铝合金导热与力学性能影响的研究. 硕士学位论文, 河北工业大学, 2022.
9 Li X S, Cai A H, Zeng J J. Advanced Materials Research, 2014, 31(12), 915.
10 Wang H, Li Y D, Luo X M, et al. Casting, 2019, 68(10), 1104(in Chinese).
王慧, 李元东, 罗晓梅, 等. 铸造, 2019, 68(10), 1104.
11 Andrea N, Asier B, Sergio O, et al. Key Engineering Materials, 2016, 710(4), 244.
12 Gong J, Luo H W. Materials Engineering, 2015, 43(6), 102(in Chinese).
龚坚, 罗海文. 材料工程, 2015, 43(6), 102.
13 Chen Z Q, Jia J Y, Hu W X, et al. Rare Metal Materials and Engineering, 2020, 49(10), 3388(in Chinese).
陈志强, 贾锦玉, 胡文鑫, 等. 稀有金属材料与工程, 2020, 49(10), 3388.
14 Gan J Q, Huang Y J, Wen C, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(11), 2879(in Chinese).
甘俊旗, 黄玉剑, 温澄, 等. 中国有色金属学报, 2020, 30(11), 2879.
15 Li X Y, Lu Y L, Wang J, et al. Materials Engineering, 2018, 46(1), 67(in Chinese).
李晓燕, 卢雅琳, 王健, 等. 材料工程, 2018, 46(1), 67.
16 Colombo M, Albu M, Gariboldi E, et al. Materials Characterization, 2019, 161(5), 110.
17 Yan P Y, Mao W M, Fan Q, et al. Special Casting and Nonferrous Alloys, 2021, 41(4), 474(in Chinese).
闫鹏宇, 毛卫民, 范菁, 等. 特种铸造及有色合金, 2021, 41(4), 474.
18 Gao J. Philosophical Transactions of the Royal Society A:Mathematical, Physical, and Egineering Sciences, 2018, 376(2113), 20170209.
19 Hogan L M, Kobayashi K F, Shamsuzzoha M. Metallurgical Transactions A, 1989, 20(7), 1286.
20 Hamilton D R, Seidensticker R G. Journal of Applied Physics, 1960, 31(7), 1165.
21 Nogita K, Mcdonald S D, Dahle A K. Materials Transactions, 2004, 45(2), 323.
22 Yan H, Zhang J Q, Zhang S. Materials Review: Nano and New Materials Album, 2013, 27(2), 285(in Chinese).
闫洪, 张敬奇, 张苏. 材料导报: 纳米与新材料专辑, 2013, 27(2), 285.
23 Wu D Y, Kang J, Feng Z H, et al. Journal of Alloys and Compounds. 2019, 791(3), 628.
24 She X W. The influence of Er, Zr, Sr and other trace elements on the structure and properties of 5052 alloy. Master's Thesis, Southwest University, China, 2016 (in Chinese).
佘欣未. Er、Zr、Sr等微量元素对5052合金组织和性能的影响. 硕士学位论文, 西南大学, 2016.
25 Nie Z R, Wen S P, Huang H, et al. Chinese Journal of Nonferrous Metals, 2011, 21(10), 2361(in Chinese).
聂祚仁, 文胜平, 黄晖, 等. 中国有色金属学报, 2011, 21(10), 2361.
26 Nie Z R, Huang H, Gao K Y et al. Materials Science Forum, 2012, 706(8), 329.
27 Cong Z, Gang J, Zhe C, et al. Materials and Design, 2014, 63(11), 719.
28 Liang T, Iver A, Trevor R, Alan R. Acta Materialia, 2014, 77(1), 151.
29 Sarginson M D. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1950, 203(10), 223.
30 Mayadas A F, Shatzkes M. Physical Review B, 1970, 1(4), 1382.
31 Kocer M, Sachslehner, Müller M. Materials Science Forum, 1996, 1(210/213), 133.
32 Guo Y. Design and preparation of high thermal conductivity aluminum-silicon alloy and its thermal conduction mechanism. Ph. D. Thesis, Harbin University of Science and Technology, China, 2020 (in Chinese).
郭宇. 高导热铝硅合金设计制备及其导热机理. 博士学位论文, 哈尔滨理工大学, 2020.
33 Paranjape M, Paranjape V. Microelectronic Engineering, 2000, 12(1), 227.
34 Yang B, Yang J Y, Liu L Y. Hot Working Technology, 2021, 50(13), 75(in Chinese).
杨斌, 杨金玉, 刘丽亚. 热加工工艺, 2021, 50(13), 75.
35 Kobayashi T. Materials Science & Engineering A, 2000, 280(1), 8.
[1] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[2] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[3] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[4] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[5] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[6] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[7] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[8] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[9] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[10] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[11] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[12] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[13] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[14] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[15] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed