Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21050134-7    https://doi.org/10.11896/cldb.21050134
  无机非金属及其复合材料 |
微波活化煤矸石对水泥基材料的性能影响
关虓1,2,*, 陈霁溪1, 朱梦宇1, 高洁1, 丁莎2,3
1 西安科技大学建筑与土木工程学院,西安 710054
2 西安建筑科技大学省部共建西部绿色建筑国家重点实验室,西安 710055
3 西安建筑科技大学土木工程学院,西安 710055
Effect of Microwave Activated Coal Gangue on Properties of Cement-based Materials
GUAN Xiao1,2,*, CHEN Jixi1, ZHU Mengyu1, GAO Jie1, DING Sha2,3
1 School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China
3 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 36962KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用微波对煤矸石粉进行高温辐射以激发其潜在活性,使其作为掺合料高效运用于水泥基材料中。通过红外温度仪测量煤矸石粉微波温度,进一步利用激光粒度分析、XRD和SEM对活性煤矸石粉的矿物组成和微观形貌进行表征,对比分析了未活化和活化后煤矸石胶砂的流动度及力学性能,研究了活性煤矸石粉的水化机理。结果表明:微波高温后,煤矸石粉的粒度整体减小,颗粒圆润化和粒径均匀化。此外,微波高温使得煤矸石结构疏松多孔,所需游离水增加,胶砂流动度下降。当微波温度为500~600 ℃,煤矸石粉掺量为10%、20%、30%时,试块的28 d抗压强度比未活化组分别提高了46.5%、37.9%、51.1%。活性煤矸石浆体中煤矸石粉表面生成了水化活性较好的C-S-H和C-A-S-H凝胶,发挥了火山灰效应,而未反应的煤矸石粉则填充在浆体空隙中,进而提高了胶砂的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关虓
陈霁溪
朱梦宇
高洁
丁莎
关键词:  微波  煤矸石  活性  力学性能  水化    
Abstract: In this study, high-temperature microwave radiation was used to stimulate the potential activity of coal gangue powder, so that it could be used as an admixture in cement-based materials. The temperature of coal gangue powder was measured by infrared thermometer. Further, laser particle size analysis, XRD and SEM were used to characterize the mineral composition and microscopic morphology of activated coal gangue powder. The flowability and mechanical properties of unactivated and activated coal gangue mortar were compared and analyzed, and the hydration mechanism of activated coal gangue powder was studied. The results showed that after microwave heating, the particle size of coal gangue powder decreased as a whole, and the particles were rounded and uniform. In addition, the high temperature of the microwave caused the structure of coal gangue loose and porous, the required free water added, and the flowability of mortar reduced. When the microwave tempe-rature was 500—600 ℃ and the content of coal gangue powder was 10%, 20% and 30%, the 28 d compressive strength of the specimen was 46.5%, 37.9% and 51.1% higher than that of the unactivated group, respectively. The C-S-H and C-A-S-H gels with good hydration activity were formed on the surface of coal gangue powder in the active coal gangue slurry, which played a pozzolanic effect, while the unreacted coal gangue powder was filled in the gap of the slurry, thus improving the mechanical properties of the mortar.
Key words:  microwave    coal gangue    activity    mechanical properties    hydration
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TU526  
基金资助: 国家自然科学基金青年项目(51808443);陕西省自然科学基础研究计划青年项目(2019JQ-131)
通讯作者:  * 关虓,西安科技大学副教授、工学博士。2003年—2015年于西安建筑科技大学分别获得工学学士、工学硕士、工学博士学位。主要研究方向为绿色混凝土材料及固废物资源化利用。发表相关学术论文50余篇,其中SCI、EI检索20余篇。guanxiao@xust.edu.cn   
引用本文:    
关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
GUAN Xiao, CHEN Jixi, ZHU Mengyu, GAO Jie, DING Sha. Effect of Microwave Activated Coal Gangue on Properties of Cement-based Materials. Materials Reports, 2023, 37(4): 21050134-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050134  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21050134
1 Shi X Y, Cai Q X, Qi C C, et al. Construction and Building Materials, 2021, 270, 121423.
2 Li J Y, Wang J M. Journal of Cleaner Production, 2019, 239, 117946.
3 Guan X, Chen J X, Qiu J S, et al. Construction and Building Materials, 2020, 246, 118437.
4 Liu J Y, Chen H Y. IOP Conference Series:Materials Science and Engineering, 2018, 359(1), 12013.
5 Zhao Y L, Qiu J P, Ma Z Y, et al. Journal of Cleaner Production, 2021, 285, 124834.
6 Wang Y Z, Liu C X, Yi T, et al. Construction and Building Materials, 2020, 242, 118006.
7 Guo W, Li D X, Chen J H, et al. Mining Research and Development, 2007, 27(3), 35 (in Chinese).
郭伟, 李东旭, 陈建华, 等. 矿业研究与开发, 2007, 27(3), 35.
8 Cao Z, Cao Y, Dong H, et al. International Journal of Mineral Processing, 2016, 146, 23.
9 Gao Q Y, Zhang Z Q. Journal of the Chinese Ceramic Society, 1989, 17(6), 63 (in Chinese).
高琼英, 张智强. 硅酸盐学报, 1989, 17(6), 63.
10 Guo W, Li D X, Chen J H, et al. Journal of Materials Science and Engineering, 2008, 26(2), 204 (in Chinese).
郭伟, 李东旭, 陈建华, 等. 材料科学与工程学报, 2008, 26(2), 204.
11 Zhong S L, Zhang M S, Su Q. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005(3), 71(in Chinese).
钟声亮, 张迈生, 苏锵. 中山大学学报(自然科学版), 2005(3), 71.
12 Zhang C S, Deng Y X, Wu Q S. Chinese Journal of Environmental Engineering, 2013, 7(8), 3170 (in Chinese).
张长森, 邓育新, 吴其胜. 环境工程学报, 2013, 7(8), 3170.
13 Zhang C S. Bulletin of the Chinese Ceramic Society, 2004(5), 112 (in Chinese).
张长森. 硅酸盐通报, 2004(5), 112.
14 Zhao Z M, Song W M, Dong B, et al. Materials Reports, 2011, 25(Z1), 474 (in Chinese).
赵志曼, 宋万明, 董斌, 等. 材料导报, 2011, 25(Z1), 474.
15 Zhu B R, Yang Q B. Journal of Building Materials, 2006, 9(4), 484. (in Chinese).
朱蓓蓉, 杨全兵. 建筑材料学报, 2006, 9(4), 484.
16 Chaaruchandra K, Matthew C, Roger P W, et al. Construction and Building Materials, 2019, 216, 506.
[1] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[2] 王均委, 李琳, 齐家瑞, 郑勤红, 姚斌. 圆柱形光子晶体微波反应腔的加热效率和均匀性研究[J]. 材料导报, 2023, 37(4): 21060010-8.
[3] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[4] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[5] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[6] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[7] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[8] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[9] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[10] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[11] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[12] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[13] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[14] 李辉, 姚敏, 赖娟, 马长坡, 吴正德, 邱祖民. 端羟基含氟乙烯基聚硅氧烷的合成及应用[J]. 材料导报, 2023, 37(2): 21040285-6.
[15] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed