Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21080295-5    https://doi.org/10.11896/cldb.21080295
  无机非金属及其复合材料 |
低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能
章国涛1,*, 高艳1, 刘书利1, 孟德喜1, 高娜燕1, 郑勇2
1 中科芯集成电路股份有限公司,江苏 无锡 214072
2 南京航空航天大学材料科学与技术学院,南京 210016
Structure and Dielectric Properties of Ca1-xSrxMgSi2O6 Microwave Dielectric Ceramics with Low Dielectric Loss
ZHANG Guotao1,*, GAO Yan1, LIU Shuli1, MENG Dexi1, GAO Nayan1, ZHENG Yong2
1 China Key System & Integrated Circuit Co., Ltd., Wuxi 214072, Jiangsu, China
2 College of Material Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 6723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了Sr2+取代Ca2+对Ca1-xSrxMgSi2O6陶瓷烧结特性、物相组成、显微组织和微波介电性能的影响。结果表明:采用Sr2+取代部分Ca2+时可以降低陶瓷的烧结温度,并且提高陶瓷的致密度。当Sr2+取代量小于等于0.5时,陶瓷烧结体中只存在单一的CaMgSi2O6相。随着Sr2+取代量的增加,Ca1-xSrxMgSi2O6 陶瓷的介电常数和品质因数均先增大后减小,而谐振频率温度系数逐渐增大。当Sr2+取代量为0.4时,Ca0.6Sr0.4MgSi2O6陶瓷在1 225 ℃下烧结4 h具有较佳的综合微波介电性能:εr=7.480,Q×f=78 920 GHz,τf = -41.50×10-6/℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章国涛
高艳
刘书利
孟德喜
高娜燕
郑勇
关键词:  微波介质陶瓷  CaMgSi2O6  离子取代  介电性能    
Abstract: The influence of the substitution of Sr2+ for Ca2+ on the sintering characteristics, phase composition, microstructure and microwave dielectric properties of Ca1-xSrxMgSi2O6 ceramics was investigated. The results showed that the substitution of Sr2+ can lower the sintering temperature and improve the density of ceramics. When the Sr2+ substitution amount was less than or equal to 0.5, only a single CaMgSi2O6 phase existed in the ceramics. With the increase of Sr2+ content, the dielectric constant and quality factor of Ca1-xSrxMgSi2O6 ceramics both increased first and then decreased, while the temperature coefficient of resonance frequency gradually increased. Ca0.6Sr0.4MgSi2O6 ceramics sintered at 1 225 ℃ for 4 h showed superior comprehensive microwave dielectric properties: εr=7.480, Q×f=78 920 GHz, τf=-41.50×10-6/℃.
Key words:  microwave dielectric ceramics    CaMgSi2O6    ionic substitution    dielectric property
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51674148)
通讯作者:  * 章国涛,中国电子科技集团公司第五十八研究所工程师。2014年毕业于南京航空航天大学,获材料科学与工程专业学士学位,2014—2020年硕博连读于南京航空航天大学,2020年获材料加工工程专业博士学位。同年加入中国电子科技集团公司第五十八研究所工作至今,主要从事陶瓷封装材料和工艺的研发以及先进封装工艺的开发,重点研究陶瓷材料的制备、表征以及应用。在国内外重要期刊发表文章10多篇,申报发明专利6项。zhangguotao95@163.com   
引用本文:    
章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
ZHANG Guotao, GAO Yan, LIU Shuli, MENG Dexi, GAO Nayan, ZHENG Yong. Structure and Dielectric Properties of Ca1-xSrxMgSi2O6 Microwave Dielectric Ceramics with Low Dielectric Loss. Materials Reports, 2023, 37(4): 21080295-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080295  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21080295
1 Li B R, Zhang X L. Inorganic dielectric medium, Central China University of Science and Technology Press, China, 1995 (in Chinese).
李标荣, 张绪礼. 无机电介质, 华中理工大学出版社, 1995.
2 Lyu X P, Zheng Y, Zhou B, et al. Materials Reports B: Research Papers, 2012, 26(6), 146 (in Chinese).
吕学鹏, 郑勇, 周斌, 等. 材料导报:研究篇, 2012, 26(6), 146.
3 Wang G, Fu Q Y, Zhang L, et al. Materials Reports A: Review Papers, 2019, 33(7), 2151 (in Chinese).
王耿, 傅邱云, 张芦, 等. 材料导报:综述篇, 2019, 33(7), 2151.
4 Yang H, Zhang Q L. Journal of the Chinese Ceramic Society, 2008, 36(6), 866 (in Chinese).
杨辉, 张启龙. 硅酸盐学报, 2008, 36(6), 866.
5 Lu X P, Zheng Y, Zhou B, et al. Ceramics International, 2013, 39(8), 9829.
6 Yang H, Zhang Q, Wang J, et al. Journal of the Chinese Ceramic Society, 2003, 31(10), 965.
7 Khattak M I, Sohail A, Khan U, et al. Progress in Electromagnetics Research C, 2019, 89, 133.
8 Wang K, Wu G X, Sun S L, et al. Electronics & Packaging, 2020, 20(6), 37 (in Chinese).
王慷, 吴光勋, 孙士林, 等. 电子与封装, 2020, 20(6), 37.
9 Wang H Y, Liu P, Wei J S, et al. Journal of the Chinese Ceramic Society, 2015, 43(9), 1203 (in Chinese).
王闳毅, 刘鹏, 魏金生, 等. 硅酸盐学报, 2015, 43(9), 1203.
10 Sebastian M T, Jantunen H. Metallurgical Reviews, 2013, 53(2), 57.
11 Ohishi Y, Miyauchi Y, Ohsato H, et al. Japanese Journal of Applied Physics, 2004, 43, 794.
12 Zheng C W, Fan X C, Chen X M. Journal of the American Ceramic Society, 2010, 91(2), 490.
13 Pullar R C, Farrah S, Alford N M. Journal of the European Ceramic Society, 2007, 27(2-3), 1059.
14 Zhang Q L, Yang H, Sun H P. Journal of the European Ceramic Society, 2008, 28(3), 605.
15 Zhang J, Zhou Y, Yue Z. Ceramics International, 2013, 39(2), 2051.
16 Gori C, Tribaudino M, Mantovani L, et al. Mineralogical Magazine, 2017, 81(5), 1129.
17 Li H, X Chen, Xiang Q, et al. Ceramics International, 2019, 45, 14160.
18 Zhang J, Zhou Y, Yue Z. Ceramics International, 2013, 39(2), 2051.
19 Li H, Cai C, Xiang Q, et al. Ceramics International, 2019, 45(17), 23157.
20 Cai C, Chen X, Li H, et al. Ceramics International, 2020, 46, 27679.
21 Tang B, Xiang Q Y, Fang Z X, et al. Ceramics International, 2019, 45(9), 11484.
22 Prencipe M, Mantovani L, Tribaudino M, et al. European Journal of Mineralogy, 2012, 24(3), 457.
23 Shannon R D. Journal of Applied Physics, 1993, 73(1), 348.
24 Lai Y, Hua S, Gang W, et al. Journal of Alloys and Compounds, 2019, 772, 40.
25 Mi X, Yanshuang W, Hongrui S, et al. Journal of Materials Science Materials in Electronics, 2018, 29, 20339.
26 Liao Q, Li L. Dalton Transactions, 2012, 41(23), 6963.
27 Zhao Y, Ping Z. RSC Advances, 2015, 5(118), 97746.
28 Zhao Y, Ping Z. Dalton Transactions, 2016, 45(29), 11807.
29 Yokoi A, Ogawa H, Kan A, et al. Journal of the European Ceramic Society, 2007, 27(8-9), 2989.
30 Manu K M, Karthik C, Ubic R, et al. Journal of the American Ceramic Society, 2013, 96(12), 3842.
31 Sugiyama T, Tsunooka T, Kakimoto K I, et al. Journal of the European Ceramic Society, 2006, 26(10), 2097.
32 Umemura R, Ogawa H, Ohsato H, et al. Journal of the European Ceramic Society, 2005, 25(12), 2865.
33 Yoon S H, Kim D W, Cho S Y, et al. Journal of the European Ceramic Society, 2006, 26(10-11), 2051.
34 Guo Y, Ohsato H, Kakimoto K I. Journal of the European Ceramic Society, 2006, 26(10-11), 1827.
35 Subramanian V, Murthy V R, Viswanathnan B. Japanese Journal of Applied Physics, 1997, 36, 194.
36 Yu H, Cheng J, Zhang W, et al. Journal of Materials Science Materials in Electronics, 2012, 23(2), 572.
[1] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[2] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[3] 关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
[4] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[5] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[6] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[7] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[8] 王志勇, 夏奇, 李波. ZnO掺杂对钙硼硅系玻璃陶瓷微观结构与性能的影响[J]. 材料导报, 2021, 35(12): 12049-12052.
[9] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[10] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[11] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[12] 杨小波, 吕毅, 王华栋, 张冰清, 应国兵. 尖晶石固化磷酸铝基复合材料的制备与性能[J]. 材料导报, 2019, 33(18): 3012-3015.
[13] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[14] 王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[15] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed