Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20080076-7    https://doi.org/10.11896/cldb.20080076
  高分子与聚合物基复合材料 |
填充型聚合物基介电储能复合材料的研究进展
汪叶舟, 曲绍宁, 尹训茜*
山东科技大学材料科学与工程学院,山东 青岛 266590
Research Progress of Filler-filled Polymer-based Dielectric Composites for Energy Storage
WANG Yezhou, QU Shaoning, YIN Xunqian*
College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590,Shandong, China
下载:  全 文 ( PDF ) ( 4631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物薄膜电容器具有功率密度超高、击穿场强高、易于生产和密度小等特点,因而被广泛地应用于电力电子设备中。但是由于聚合物本身低的介电常数而导致其能量密度较低,限制了其在新兴领域的应用。通过复合的方式向聚合物基体中加入不同形貌与特性的填料是提高聚合物能量密度的有效途径。本文综述了近年来国内外关于填充型聚合物基介电储能复合材料的研究现状,分类讨论了各种填料的优势与不足,探究了填料与聚合物基体间的界面及相互作用对复合材料介电性能的影响,阐述了填充型聚合物基介电储能复合材料存在的问题和未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪叶舟
曲绍宁
尹训茜
关键词:  填料  聚合物基复合材料  介电性能  能量密度  界面    
Abstract: Polymer film capacitors are widely used in advanced electric and electronic devices due to their ultra-high power density, high breakdown strength, ease of processing and low density. However, polymer film capacitors suffer from low energy density resulting from their low dielectric constant, which limits their applications in emerging high-tech fields. Introducing fillers with different morphologies and characteristics into polymer matrix is one of the most promising approaches to increase the energy density of polymer dielectrics. In this featured review, the recent development of filler-filled polymer-based dielectric composites for energy storage were summarized. The advantages and disadvantages of different fillers for polymer-based dielectric composites were firstly introduced. Secondly, the effects of interface between the filler and the polymer matrix on the dielectric properties of composite materials and recent development focusing on interface design were discussed. Finally, problems and future development of filler-filled polymer-based dielectric composites were presented.
Key words:  fillers    polymer-based composite    dielectric properties    energy density    interface
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TM215  
  TB33  
基金资助: 国家自然科学基金青年基金项目(51807111);山东省自然科学基金博士基金(ZR2019BEE029);山东科技大学人才引进科研启动基金项目(2017RCJJ016)
通讯作者:  xqyincn@163.com   
作者简介:  汪叶舟,2017年6月毕业于山东科技大学,获得工学学士学位。现为山东科技大学材料科学与工程学院硕士研究生,在尹训茜老师的指导下进行聚合物基介电储能复合材料的研究。
尹训茜,山东科技大学材料科学与工程学院讲师。2008年7月本科毕业于山东大学材料科学与工程学院;2016年3月在法国里昂国立应用科学学院(INSA de Lyon)获电气工程博士学位。2016年9月入职山东科技大学材料科学与工程学院。目前主要研究领域为聚合物基介电储能复合材料和聚合物基导热功能复合材料。目前主持国家自然科学基金和山东省自然科学基金各1项,近年来累计发表SCI论文10余篇。
引用本文:    
汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
WANG Yezhou, QU Shaoning, YIN Xunqian. Research Progress of Filler-filled Polymer-based Dielectric Composites for Energy Storage. Materials Reports, 2022, 36(4): 20080076-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080076  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20080076
1 Han K, Li Q, Chanthad C, et al. Advanced Functional Materials, 2015, 25(23), 3505.
2 Jiang J Y, Shen Z H, Qian J F, et al. Nano Energy, 2019, 62, 220.
3 Zhu Y K, Zhu Y J, Huang X Y, et al. Advanced Energy Materials, 2019, 9(36), 1901826.
4 Li Y C, Fu X L, Zhan Y H, et al. Materials Reports A:Review Papers, 2018, 31(8), 18(in Chinese).
李玉超, 付雪连, 战艳虎, 等. 材料导报:综述篇,2018,31(8),18.
5 Stankovich S, Dikin D, Dommett G, et al. Nature,2006,442(7100),282.
6 Alam M, Azarian M, Pecht M, et al. Journal of Electronic Materials, 2012, 41(8), 2286.
7 Qi L, Lee B, Chen S, et al. Advanced Materials,2005,17(14),1777.
8 Zhu Y. The design of ceramics fillers and properties study in polymer-based nanocomposite dielectrics for energy storage. Master's Thesis, Huazhong University of Science & Technology,China,2019(in Chinese).
朱义为. 聚合物基纳米复合储能电介质的填料设计与性能调控. 硕士学位论文, 华中科技大学, 2019.
9 Pan Z B, Xing S, Jiang H, et al. Journal of Materials Chemistry A, 2019, 7(25), 15347.
10 Huang X Y, Sun B, Zhu Y K, et al. Progress in Materials Science, 2019, 100, 187.
11 Feenstra J, Sodano H. Journal of Applied Physics, 2008, 103(12), 124108.
12 Chi Q G, Ma T, Dong J F, et al. Scientific Reports, 2017, 7(1), 1.
13 Dan Z K, Jiang J Y, Qian J F, et al. Macromolecular Materials and Engineering, 2019, 304(12), 1900433.
14 Luo H, Roscow J, Zhou X, et al. Journal of Materials Chemistry A, 2017, 5(15), 7091.
15 Vogelsang R, Farr T, Frohlich K. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(2), 373.
16 Roy M, Nelson J, Maccrone R, et al. Journal of Materials Science, 2007, 42(11), 3789.
17 Liu F H. Structure control and dielectric energy storage properties of polymer nanocomposites based on boron nitride nanosheets. Ph.D. Thesis, Wuhan University of Technology, China, 2018(in Chinese).
刘飞华. 基于BNNS的聚合物基复合材料的结构调控与介电储能性能研究. 博士学位论文,武汉理工大学, 2018.
18 Cheng D, Wang H, Liu B, et al. Journal of Applied Polymer Science, 2019, 136(39), 47991.
19 Zhong S L, Dang Z M. Insulating Materials,2016,49(12),13(in Chinese).
钟少龙, 党智敏. 绝缘材料, 2016,49(12),13.
20 Huang L, Zhu P L, Liang X W, et al. Materials Reports A:Review Papers, 2014, 28(10), 11(in Chinese).
黄良, 朱朋莉, 梁先文, 等.材料导报:综述篇, 2014, 28(10), 11.
21 Zhang Y, Wang Y, Yuan D, et al. ACS Applied Materials & Interfaces, 2012, 4(1), 65.
22 Robertson J. Reports on Progress in Physics, 2005, 69(2), 327.
23 Li Z, Fredin L, Tewari P, et al. Chemistry of Materials, 2010, 22(18), 5154.
24 He D L, Wang Y, Chen X Q, et al. Composites Part A: Applied Science and Manufacturing, 2017, 93, 137.
25 Bi J Y, Gu Y Z, Zhang Z C, et al. Materials & Design, 2016, 89, 933.
26 Luo S B, Yu J Y, Yu S H, et al. Advanced Energy Materials, 2019, 9(5), 1803204.
27 Zhang X, Shen Y, Zhang Q H, et al. Advanced Materials, 2015, 27(5), 819.
28 Zhu M, Huang X Y, Yang K, et al. ACS Applied Materials & Interfaces, 2014, 6(22), 19644.
29 Wang Z, Wang T, Wang C, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 29130.
30 Liu S, Xue S, Xiu S, et al. Scientific Reports, 2016, 6, 26198.
31 Zhang Q, Jiang Y, Yu E, et al. Surface and Coatings Technology, 2019, 358, 293.
32 Zhou Y, Liu Q, Chen F, et al. Journal of Materials Science, 2020, 55(25), 11296.
33 Luo Y, Wu G N, Peng J, et al. High Voltage Engineering, 2012,38(9), 2455(in Chinese).
罗杨, 吴广宁, 彭佳, 等. 高电压技术, 2012,38(9), 2455.
34 Lewis T J. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5), 812.
35 Pourrahimi A M, Mohammadi N, Javadi A. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(5), 327.
36 Luo H, Zhou X F, Ellingford C, et al. Chemical Society Reviews, 2019, 48(16), 4424.
37 Shen Z H, Wang J J, Jiang J Y, et al. Advanced Energy Materials, 2018, 8(20), 1800509.
38 Zhang X, Chen W, Wang J, et al. Nanoscale, 2014, 6(12), 6701.
39 Tanaka T, Kozako M, Fuse N, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4), 669.
40 Lewis T. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5), 739.
41 Thakur V K, Gupta R K. Chemical Reviews, 2016, 116(7), 4260.
42 Chi Q G, Cui S, Zhang T D, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2), 535.
43 Zhang X, Zhao S, Wang F, et al. Applied Surface Science,2017,403,71.
44 Caruso F. Advanced Materials, 2001, 13(1), 11.
45 Chen X F, Shen Z, Wan X H, et al. Chemical Society Reviews, 2010, 39(8), 3072.
46 Yang X W, Xiang Z, Chen S, et al. New Journal of Chemistry, 2017, 41(15), 7553.
47 Han X H, Chen S, Lv X G, et al. Physical Chemistry Chemical Physics, 2018, 20(4), 2826.
[1] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[2] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[3] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[4] 熊小双, 张梓豪, 李巧敏, 余联庆. 考虑界面性能的短切亚麻纤维增强复合材料弹性常数预测[J]. 材料导报, 2022, 36(1): 21010018-8.
[5] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[6] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[7] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[8] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[9] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[10] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[11] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[12] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[13] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[14] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[15] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed