Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20100200-7    https://doi.org/10.11896/cldb.20100200
  无机非金属及其复合材料 |
界面过渡区厚度对再生混凝土损伤性能的影响分析
徐福卫1,2,*, 田斌1, 徐港3
1 三峡大学水利与环境学院,湖北 宜昌 440072
2 湖北文理学院土木工程与建筑学院,湖北 襄阳441053
3 三峡大学土木与建筑学院,湖北 宜昌 440072
Influence Analysis of Interface Transition Zone Thickness on the Damage Performance of Recycled Concrete
XU Fuwei1,2,*, TIAN Bin1, XU Gang3
1 College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 440072, Hubei, China
2 School of Civil Engineering and Architecture, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
3 College of Civil Engineering & Architecture, China Three Gorges University, Yichang 440072, Hubei, China
下载:  全 文 ( PDF ) ( 10120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 界面过渡区一直是混凝土和再生混凝土的薄弱点,为了进一步研究界面过渡区对再生混凝土损伤性能的影响。本文工作对再生混凝土界面过渡区厚度的计算公式进行了推导,得到了再生混凝土界面过渡区的厚度定量计算公式,并计算了再生骨料掺量为30%(质量分数)的再生混凝土中不同粒径骨料的界面过渡区厚度。采用混凝土模型试验方法,运用有限元分析软件对普通混凝土界面过渡区厚度为0.05 mm和再生混凝土界面过渡区厚度分别为1 mm、2 mm、3 mm、4 mm的混凝土模型进行了模拟分析。结果表明,不同厚度的界面过渡区对再生混凝土损伤开裂强度影响明显,随界面过渡区厚度的增加,再生混凝土损伤开裂荷载不断降低;再生混凝土的损伤开裂都是从界面过渡区开始的,且随界面过渡区厚度增加,损伤程度增加;与普通混凝土相比,当界面过渡区厚度不超过2 mm(再生骨料替代率不超过30%)时,再生混凝土损伤开裂荷载降低不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐福卫
田斌
徐港
关键词:  再生混凝土  界面过渡区  厚度  损伤性能    
Abstract: The interface transition zone has always been the weak point of concrete and recycled concrete. In order to further study the influence of interface transition zone on the damage performance of recycled concrete. In this paper, the calculation formula of the thickness of the interface transition zone of recycled concrete is deduced, and the quantitative calculation formula of the thickness of the interface transition zone of recycled concrete is obtained, and the thickness of the interface transition zone of different particle sizes of recycled concrete with the recycled aggregate content of 30% (mass fraction) is calculated. The concrete model with the thickness of 0.05 mm interface transition zone of ordinary concrete and 1 mm, 2 mm, 3 mm and 4 mm interface transition zone of recycled concrete were simulated and analyzed by using finite element analysis software. The results show that the interface transition zone of different thickness has obvious influence on the damage cracking strength of recycled concrete, and the damage cracking load of recycled concrete decreases with the increase of interface transition zone thickness. The damage cracking of recycled concrete starts from the interface transition zone, and the damage degree increases with the increase of the thickness of the interface transition zone. Compared with ordinary concrete, when the thickness of the interface transition zone is less than 2 mm (the replacement rate of recycled aggregate is less than 30%), the damage cracking load of recycled concrete does not decrease obviously.
Key words:  recycled concrete    interface transition zone (ITZ)    thickness    damage performance
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TU528.45  
基金资助: 湖北省教育厅科学研究计划指导性项目(B2021214)
通讯作者:  10916@hbuas.edu.cn   
作者简介:  徐福卫,湖北文理学院土木工程与建筑学院,教授。2006年6月毕业于三峡大学,获水工结构工程硕士学位,同年加入湖北文理学院工作至今。2015年开始在三峡大学攻读博士学位,主要从事再生混凝土基本力学性能研究。
引用本文:    
徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
XU Fuwei, TIAN Bin, XU Gang. Influence Analysis of Interface Transition Zone Thickness on the Damage Performance of Recycled Concrete. Materials Reports, 2022, 36(4): 20100200-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100200  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20100200
1 Xiao J Z, Liu Q, Li W G, et al. Journal of Qingdao Technological University, 2009,30(4), 24(in Chinese).
肖建庄,刘 琼,李文贵,等. 青岛理工大学学报,2009,30(4),24.
2 Ouyang L J, An Z W, Yang W T, et al. China Concrete and Cement Products, 2018(2), 7(in Chinese).
欧阳利军,安子文,杨伟涛,等. 混凝土与水泥制品,2018(2),7.
3 Xie S S. Journal of the Chinese Ceramic Society, 1983, 11 (4), 489(in Chinese).
解松善. 硅酸盐学报,1983, 11(4),489.
4 Yuan C Z, Odler I. Cement Concrete Research, 1987, 17(5), 784.
5 Berger R L, Cahn D S, Mcgregor J D. Journal of the American Ceramic Society, 2010, 53(1),57.
6 Wu Z W. Journal of Wuhan University of Technology, 1982, 2, 143(in Chinese).
吴中伟.武汉建材学院学报,1982, 2,143.
7 Etxeberria M, Vázquez E, Marí A R.Magazine of Concrete Research, 2006, 58(10), 683.
8 Dhir R R K, Limbachiya M C. Proceedings of the Institution of Civil Engineers, 1999,134(3), 257.
9 Xiao J, W Li, Corr D J, et al. Cement and Concrete Research, 2013,52,82.
10 Li W G, Xiao J Z, Yi W J, et al. Journal of Building Structures, 2014, 35(S2), 340(in Chinese).
李文贵,肖建庄,易伟建,等. 建筑结构学报,2014,35(S2),340.
11 Buyukozturk O, Nilson A H, ACI Materials Journal, 1971, 68(8), 590.
12 Liu T Y, Nilson A H, Slate F O. ACI Journal Proceedings, 1972, 69(31), 291.
13 Chen H S, Sun W, Stroeven P. Acta Materiae Compositae Sinica, 2006, 23 (2), 133(in Chinese).
陈惠苏,孙伟,Stroeven Piet. 复合材料学报,2006, 23(2), 133.
14 Wang Y M. Strength and constitutive relationship of recycled aggregate concrete under multiaxial stress states. Ph.D. Thesis, Guangxi University, China, 2017(in Chinese).
王玉梅. 再生混凝土在多轴应力下的强度及本构关系研究. 博士学位论文,广西大学,2017.
15 He J H. Study on microstructure and properties of road cement concrete. Master's Thesis,Chang'an University, China, 2009(in Chinese).
何俊辉. 道路水泥混凝土微观结构与性能研究. 硕士学位论文,长安大学,2009.
16 Marta S J, Pilar A G. In: International RILEM Conference on the Use of Recycled Materials in Buildings and Structurese. Barcelona(ES), 2004, pp.973.
17 Xiao J Z, Yuan B, Lei B. Coal Ash China, 2007,19(1), 14(in Chinese).
肖建庄,袁飚,雷斌. 粉煤灰,2007, 19(1), 14.
18 Cao B B. Study on the thermal properties of concrete and the technology of concrete reuse. Master's Thesis,Wuhan University of Technology, China, 2006(in Chinese).
曹蓓蓓. 混凝土的热特性与再生利用研究.硕士学位论文,武汉理工大学,2006.
19 Zhao L Y, Zheng J J. Sichuan Building Science, 2002, 28 (2), 57(in Chinese).
赵良颖,郑建军. 四川建筑科学研究,2002, 28(2), 57.
20 Peng Y J, Ying L P. Meso-analysis method for recycled concrete, Science Press, China, 2018, pp. 51(in Chinese).
彭一江,应黎坪. 再生混凝土细观分析方法, 科学出版社,2018,pp. 51.
21 Breugel K V. Simulation of hydration and formation of structure in har-dening cement-based materials. Ph.D. Thesis, Delft University of Techno-logy, Netherlands, 1991.
22 Zheng J J, Li C Q, Zhou X Z. Magazine Concrete of Research, 2005, 57(7), 397.
23 Zheng J J, Li C Q, Zhou X Z. ACI Materials Journal, 2005, 102(4), 265.
24 Shah S P, Winter G. ACI Materials Journal, 1966, 63(9), 5.
25 Lawler J S, Keane D T, Shah S P. ACI Materials Journal, 2001, 98(6), 465.
26 Wang X F, Fang J J, Luo S R, et al. Journal of Hydroelectric Enginee-ring, 2018, 37(9), 111(in Chinese).
王雪芳,方金杰,罗素蓉,等. 水力发电学报,2018,37(9), 111.
27 Xiao J Z, Du J T, Liu Q. Journal of Building Materials, 2009, 12 (5), 511(in Chinese).
肖建庄,杜江涛,刘琼.建筑材料学报,2009,12(5),511.
28 Lutz M P, Monteiro P J M, Zimmerman R W. Cement & Concrete Research, 1997, 27(7), 1113.
29 Du X L, Wang Y, Lu D C. In: Academic Conference of the 2nd National Engineering Safety and Protection. Beijing, 2010,pp. 236(in Chinese).
杜修力,王阳,路德春.第2届全国工程安全与防护学术会议. 北京,2010,pp.236.
30 Hu M P. Concrete, 2007(2), 52(in Chinese).
胡敏萍. 混凝土,2007(2),52.
31 Li J B, Xiao J Z, Huang J. Journal of Building Materials, 2006, 9(3), 297(in Chinese).
李佳彬,肖建庄,黄健. 建筑材料学报,2006, 9(3),297.
32 Zhou J H, He H J, Meng X H, et al. Journal of Shenyang Jianzhu University (Natural Science), 2010, 26 (3), 464(in Chinese).
周静海,何海进,孟宪宏,等. 沈阳建筑大学学报(自然科学版),2010, 26(3),464.
[1] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[2] 李刚, 李中双, 符伟, 谭俊哲, 杨康. 焊接顺序对管状大厚度V形接头焊接残余应力场的影响[J]. 材料导报, 2021, 35(z2): 325-328.
[3] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[4] 杨小军, 池作和, 王进卿, 潜培豪, 王广鑫, 王杰. 玻璃粉对聚硅氮烷陶瓷涂层厚度及孔隙的影响[J]. 材料导报, 2021, 35(6): 6060-6064.
[5] 杜文平, 杨才千, 王冲. 加固层厚度对PVA-RFCC加固梁弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4067-4073.
[6] 陈旭勇, 程子扬, 詹旭, 吴巧云. 纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟[J]. 材料导报, 2021, 35(23): 23235-23240.
[7] 陈宇良, 姜锐, 陈宗平, 刘杰. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19): 19015-19021.
[8] 邓祥辉, 高晓悦, 王睿, 赵崇基. 再生混凝土抗冻性能试验研究及孔隙分布变化分析[J]. 材料导报, 2021, 35(16): 16028-16034.
[9] 张高展, 葛竞成, 张春晓, 杨军, 刘开伟, 王爱国, 孙道胜. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133.
[10] 于江, 皮滟杰, 秦拥军. 循环载荷下再生混凝土损伤声发射特性[J]. 材料导报, 2021, 35(13): 13011-13017.
[11] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[12] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[13] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[14] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[15] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed