Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 21020037-7    https://doi.org/10.11896/cldb.21020037
  无机非金属及其复合材料 |
基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法
杨利香1, 宋兴福1,*, 陆美荣2,3, 夏月辉2,3
1 华东理工大学资源与环境工程学院,上海 200237
2 上海市建筑科学研究院有限公司,上海 201108
3 上海工业固体废弃物资源化利用工程技术研究中心,上海 201108
The Mixture Proportioning Design of Sand-containing Pervious Concrete Based on Mortar Thickness of Recycled Coarse Aggregate
YANG Lixiang1, SONG Xingfu1,*, LU Meirong2,3, XIA Yuehui2,3
1 School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
2 Research Institute of Building Materials and Solid Waste Recycling, Shanghai Research Institute of Building and Science Co., Ltd., Shanghai 201108, China
3 Shanghai Engineering Technology Research Center of Industrial Solid Waste Recycling, Shanghai 201108, China
下载:  全 文 ( PDF ) ( 4441KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了不同水胶比下外加剂掺量对胶凝材料净浆流动度的影响,以及净浆流动度、中砂/净浆质量比双因素耦合作用下再生粗骨料裹覆砂浆厚度的变化规律;建立了胶凝材料净浆流动度与外加剂掺量,再生粗骨料裹覆砂浆厚度与净浆流动度、中砂/净浆质量比两个数学关联模型,并将两个数学关联模型应用到透水混凝土配合比设计中。结果表明,再生粗骨料裹覆砂浆厚度随砂浆流动度减小而增大,且骨料粒径愈大,其裹覆厚度愈大。采用再生骨料RCA-9.5配制含砂透水混凝土,其砂浆浆体稳定包裹再生粗骨料,无漏浆封底、露骨散架等问题;混凝土试件28 d抗压强度为14.1~17.1 MPa,28 d抗折强度为2.0~2.7 MPa,透水系数大于6 mm·s-1,抗冻性和耐磨性良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨利香
宋兴福
陆美荣
夏月辉
关键词:  再生粗骨料  骨料裹砂浆厚度  含砂透水混凝土  配合比设计    
Abstract: The effects of additive content on the fluidity of cementitious paste under different W/B ratio were studied, and ementitious paste fluidity, sand/paste mass ratio on the mortar thickness of RCA were experimentally investigated. Two mathematical correlation models were established, which were the fluidity of cementitious paste and the dosage of admixture, the mortar thickness on RCA, and cementitious paste fluidity and the mass ratio of sand to cementitious paste. The two mathematical correlation models were applied to the mix design of pervious concrete. The results show that the thickness of recycled coarse aggregate coating mortar increases with the decrease of fluidity of mortar, and the larger the size of recycled coarse aggregate is, the greater the coating thickness is. The recycled aggregate RCA-9.5 was used to prepare sand-containing pervious concrete. The mortar paste can stably wrap the coarse aggregate, and there are no problems such as slurry leakage, bottom sea-ling, exposed frame etc. The 28 d compressive strength and 28 d flexural strength of concrete specimen are 14.1—17.1 MPa and 2.0—2.7 MPa, respectively. The permeability coefficient is greater than 6 mm·s-1, and the concrete specimen has good frost resistance and wear resistance.
Key words:  recycled coarse aggregate    mortar thickness of aggregate    pervious concrete with sand    mixture proportioning design
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TU528  
基金资助: 上海市科委科技创新行动计划(16DZ1202005;17DZ1202400;17DZ1201404)
通讯作者:  xfsong@ecust.edu.cn   
作者简介:  杨利香,正高级工程师,华东理工大学博士研究生,硕士毕业于同济大学,现任上海市建筑科学研究院建筑材料与固废利用研究所科研室主任。主要从事固体废弃物资源化利用与绿色建材研究与开发工作。先后主持或主研国家科技部、上海市科委、建委等资助科研项目30余项;主编或参编国家、行业等标准15项(主编9项);公开发表论文27篇;授权发明专利6项;获国家省部级科技奖10项。
宋兴福,教授,博士研究生导师。现任国家盐湖综合利用工程技术研究中心副主任,资源过程工程研究所所长。主要从事资源高效循环利用与废弃物资源化处理相关理论研究与技术开发。先后主持国家重点研发项目、国家863项目等国家和省部级科技攻关项目20余项;授权发明专利33项,获得国家科技进步二等奖2项,省部级科技进步一等奖4项,发表论文150余篇。
引用本文:    
杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
YANG Lixiang, SONG Xingfu, LU Meirong, XIA Yuehui. The Mixture Proportioning Design of Sand-containing Pervious Concrete Based on Mortar Thickness of Recycled Coarse Aggregate. Materials Reports, 2022, 36(4): 21020037-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020037  或          http://www.mater-rep.com/CN/Y2022/V36/I4/21020037
1 Hou L Z, Feng S Y, Han Z W, et al. Journal of China Agricultural University, 2006, 11(4), 83(in Chinese).
侯立柱, 冯绍元, 韩志文, 等.中国农业大学学报, 2006, 11(4), 83.
2 Park S B, Tia M. Cement and Concrete Research, 2004, 34(2), 177.
3 Jiang W, Sha A M, Fei J Z, et al. Journal of Functional Materials, 2012, 43(3), 379(in Chinese).
蒋玮, 沙爱民, 裴建中, 等. 功能材料, 2012, 43(3), 379.
4 Yang J, Jiang G L. Cement and Concrete Research, 2003, 33(3), 381.
5 Sun J Y, Huang K, Jiang H Q. Journal of Building Materials, 2007, 10(5), 583(in Chinese).
孙家瑛, 黄科, 蒋华钦. 建筑材料学报, 2007, 10(5), 583.
6 Ding Q J, Shen F, Liu X Q, et al. Journal of Chang'an University, 2010, 30(2), 24(in Chinese).
丁庆军, 沈凡, 刘新权, 等. 长安大学学报, 2010, 30(2), 24.
7 Tittarelli F, Carsana M, Ruello M L. Construction and Building Mate-rials, 2014, 66,30.
8 Ibrahim H A, Razak H A. Construction and Building Materials, 2016, 115, 70.
9 Su H L, Yang J, Ling T C, et al. Journal of Cleaner Production, 2015, 91, 288.
10 Guneyisi E, Gesoglu M, Kareem Q, et al. Materials & Structures, 2016, 49(1-2), 521.
11 Yap S P, Alengaram U J, Jumaat M Z, et al. Journal of Composite Materials, 2016, 50(1), 115.
12 Zaetang Y, Sata V, Wongsa A, et al. Construction and Building Mate-rials, 2016, 111, 15.
13 Pieralisi R, Cavalaro S H P, Aguado A. Cement and Concrete Research, 2017, 102, 149.
14 Sriravindrarajah R, Wang N D H, Ervin L J W. International Journal of Concrete Structures and Materials, 2012, 6(4), 239.
15 Cui X Z, Zhang J, Huang D, et al. International Journal of Pavement Engineering, 2019, 20(1), 24.
16 Tong Y Y. Study on seepage simulation of pavement structure in sponge city. Master's Thesis, Wuhan Polytechnic University, China, 2017(in Chinese).
佟洋洋. 适用于海绵城市路面结构层的渗流模拟研究.硕士学位论文,武汉轻工大学, 2017.
17 Zhang X C. Research on mix proportion design and evaluation on life cycle environmental system of performance permeable concrete.Master's Thesis, Central South University, China, 2012(in Chinese).
张贤超. 高性能透水混凝土配合比设计及其生命周期环境评价体系研究. 硕士学位论文, 中南大学, 2012.
18 Nguyen D H, Sebaibi N, Boutouil M, et al. Construction and Building Materials, 2014, 73, 271.
19 Wang W W, Wu F, Chen M Z, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(1), 103(in Chinese).
汪文文, 吴芳, 陈梦竹, 等. 硅酸盐通报, 2019, 38(1), 103.
20 He T S, Zhao X G, Zhao S Y, et al. Journal of Building Materials, 2015, 18(2), 287(in Chinese).
贺图升, 赵旭光, 赵三银, 等. 建筑材料学报, 2015, 18(2), 287.
21 Zhao H, Yang Y M, Li F X, et al. Concrete, 2014(2), 29(in Chinese).
赵洪, 杨永民, 李方贤, 等. 混凝土, 2014(2), 29.
22 Li Y K, Hu X B, Chen Q J, et al. Concrete, 2008(9), 29(in Chinese).
李彦坤, 胡晓波, 陈清己, 等. 混凝土, 2008(9), 29.
23 Deo O, Neithalath N. Construction and Building Materials, 2011, 25(11), 4181.
24 Yang L X, Kou S C, Song X F, et al. Construction and Building Mate-rials, 2021, 269, 121244.
25 Jimma B E, Rangaraju P R. Construction and Building Materials, 2014, 71, 273.
[1] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[2] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[3] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[4] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[5] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅰ:原材料和配合比设计方法[J]. 《材料导报》期刊社, 2018, 32(1): 159-166.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed