Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1519-1527    https://doi.org/10.11896/j.issn.1005-023X.2018.09.017
  材料综述 |
地质聚合物混凝土研究现状
张大旺,王栋民
中国矿业大学化学与环境工程学院, 混凝土与环境材料研究所,北京 100083
Research Status of Geopolymer Concrete
ZHANG Dawang, WANG Dongmin
School of Chemical and Environmental Engineering, China University of Mining and Technology, Institute on Concrete&Eco-Materials, Beijing 100083
下载:  全 文 ( PDF ) ( 1896KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地质聚合物混凝土是一种新型绿色建筑材料,以来源广泛的工业固体废弃物为原材料,能耗小、碳排放低、制备方便,并且抗压抗折强度、抗酸碱侵蚀性能、冻融性能、抗碳化性能优异,具有广阔的应用前景,是普通硅酸盐水泥基材料的最佳替代物之一。本文回顾了地质聚合物混凝土的国内外研究进展,综述了原材料组成、配合比设计、工作性、力学性能以及耐久性等几个方面的发展状况,评述了地质聚合物混凝土技术所面临的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张大旺
王栋民
关键词:  地质聚合物混凝土  原材料  配合比设计  力学性能  工作性  耐久性    
Abstract: Geopolymer concrete, a class of newly emerging green building materials prepared from the readily obtainable industrial solid waste, possess a variety of advantages such as low energy consumption & carbon emission and facile production process, as well as excellent compressive strength, acid and alkali resistance, freezing and thawing performance and carbonation resistance. It has displayed notable application potential, and become one of the most promising alternatives to ordinary Portland cement. This paper renders a retrospection of the domestic and overseas research endeavors, a vivid description for the raw materials, mix design, mechanical property, workability and durability of geopolymer concrete, as well as a critical discussion upon the technological problems confronting this novel and prospective engineering material.
Key words:  geopolymer concrete    raw materials    mix design    mechanical property    workability    durability
               出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  TB39  
基金资助: 国家自然科学基金面上项目(51572293);国家重点研发计划(2017YFC0505904)
通讯作者:  王栋民:通信作者,男,1965年生,博士,教授,主要从事现代高性能水泥混凝土材料及其化学外加剂的精细合成、矿业固废处理与生态环境建筑材料制备与应用 E-mail:wangdongmin-2008@163.com   
作者简介:  张大旺:男,1991年生,博士研究生,主要从事3D打印混凝土材料以及固体废弃物综合利用研究 E-mail:zhangdawang1314@163.com
引用本文:    
张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
ZHANG Dawang, WANG Dongmin. Research Status of Geopolymer Concrete. Materials Reports, 2018, 32(9): 1519-1527.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.017  或          http://www.mater-rep.com/CN/Y2018/V32/I9/1519
1 Peng J X, Huang L, Zhao Y B, et al. Modeling of carbon dioxide measurement on cement plants[J].Advanced Materials Research,2013,610-613:2120.
2 Meyer C. The greening of the concrete industry[J].Cement & Concrete Composites,2009,31(8): 601.
3 Davidovits J. Environmentally driven geopolymer cement applications[C]∥Geopolymer 2002 Conference.Melbourne,2002:1.
4 Habert G, Lacaillerie J B D E, Roussel N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends[J].Journal of Cleaner Production,2011,19(11):1229.
5 Mclellan B C, Williams R P, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement[J].Journal of Cleaner Production,2011,19(9-10):1080.
6 Turner L K, Collins F G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete[J].Construction & Building Materials,2013,43(6):125.
7 Davidovits J. Geopolymers: Inorganic polymeric new materials[J].Journal of Thermal Analysis,1991,37(8):1633.
8 Davidovits J. Geopolymers and geopolymeric materials[J].Journal of Thermal Analysis,1989,35(2):429.
9 Zhang T, Yu Q, Wei J, et al. Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag[J].Resources Conservation & Recycling,2011,56(1):48.
10 Adamiec P, Benezet J C, Benhassaine A. Pozzolanic reactivity of silico-aluminous fly ash[J].Particuology,2008,6(2):93.
11 Temuujin J, Van Riessen A, Williams R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes[J].Journal of Hazardous Materials,2009,167(3):82.
12 Lee S K, Stebbins J F. The degree of aluminum avoidance in aluminosilicate glasses[J].American Mineralogist,1999,84(5):937.
13 Yip C K, Lukey G C, Provis J L, et al. Effect of calcium silicate sources on geopolymerisation[J].Cement & Concrete Research,2008,38(4):554.
14 Dombrowski K, Buchwald A, Weil M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers[J].Journal of Materials Science,2007,42(9):3033.
15 Luo X C, Wang C A. Effect of calcia content on structure and pro-perties of metakaolin/blast furnace slag-based geopolymers[J].Journal of the Chinese Ceramic Society,2015,43(12):1800(in Chinese).
罗新春,汪长安.钙含量对偏高岭土/矿渣基地聚合物结构和性能的影响[J].硅酸盐学报,2015,43(12):1800.
16 Gao W Q, Du H Y, Liu J C,et al. Effect of calcium compounds on properties of F-class fly ash based geopolymer [J].Journal of the Chinese Ceramic Society,2015,43(3):334(in Chinese).
高婉琪,杜海燕,刘家臣,等.钙对F-型粉煤灰基地聚物性能的影响(英文)[J].硅酸盐学报,2015,43(3):334.
17 Liu Rengguang. Hydration mechanism and long-term performance of cement-slag complex cementitious materials[D].Beijing:Tsinghua University,2013(in Chinese).
刘仍光.水泥-矿渣复合胶凝材料的水化机理与长期性能[D].北京:清华大学,2013.
18 Assi L, Ghahari S A, Deaver E, et al. Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions[J].Construction & Building Materials,2016,123:806.
19 Nath P, Sarker P K, Rangan V B. Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing[J].Procedia Engineering,2015,125:601.
20 Lohani T K, Jena S, Dash K P, et al. An experimental approach on geopolymeric recycled concrete using partial replacement of indust-rial byproduct[J].International Journal of Civil & Structural Engineering,2012,1(3):141.
21 Yip C K, Deventer J S J V. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder[J].Journal of Materials Science,2003,38(18):3851.
22 Kwon Y H, Kang S H, Hong S G, et al. Acceleration of intended pozzolanic reaction under initial thermal treatment for developing cementless fly ash based mortar[J].Materials,2017,10(3):225.
23 Shi C, Krivenko P, Roy D. Alkali-activated cements and concretes[M].New York:CRC Press,2005:200.
24 Glukhovsky V D, Zaitsev Y P V. Slag-alkaline cements and concretes: Structures, properties, technological and economic aspects of use[J].Silicates Industriels,1983,48(10):197.
25 Weng L Q, Kwesi S C, Song S H, et al.Hydrolysis kinetics of aluminates in geopolymer synthesis[J].Journal of the Chinese Ceramic Society,2005,33(3):276(in Chinese).
翁履谦,Kwesi Sagoe-Crentsil,宋申华,等.地质聚合物合成中铝酸盐组分的作用机制[J].硅酸盐学报,2005,33(3):276.
26 Sakai E, Miyahara S, Ohsawa S, et al. Hydration of fly ash cement[J].Cement & Concrete Research,2005,35(6):1135.
27 Xu H, Deventer J S J V. The geopolymerisation of alumino-silicate minerals[J].International Journal of Mineral Processing,2000,59(3):247.
28 Barbosa V F F, Mackenzie K J D, Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers[J].International Journal of Inorganic Materials,2000,2(4):309.
29 Rees C A, Provis J L, Lukey G C, et al. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation[J].Langmuir the ACS Journal of Surfaces & Colloids,2007,23(17):9076.
30 Tempest B, Sanusi O, Gergely J, et al. Compressive strength and embodied energy optimization of fly ash based geopolymer concrete[J].Indian Journal of Science & Technology,2009,21(2):1.
31 Assi L N, Deaver E, Elbatanouny M K, et al. Investigation of early compressive strength of fly ash-based geopolymer concrete[J].Construction & Building Materials,2016,112:807.
32 Davidovits J. Geopolymers[J].Journal of Thermal Analysis and Calorimetry,1991,37(8):1633.
33 Provis J L, Duxson P, Deventer J S J V, et al. The role of mathematical modelling and gel chemistry in advancing geopolymer technology[J].Chemical Engineering Research & Design,2005,83(7):853.
34 Zhang Y S, Sun W, Zheng K R, et al. In situ quantitatively tracking the hydration process of K-PSDS geopolymer with ESEM[J].Journal of Building Materials,2004,7(1):8(in Chinese).
张云升,孙伟,郑克仁,等.ESEM追踪K-PSDS型地聚合物水泥的水化[J].建筑材料学报,2004,7(1):8.
35 Li H J. Study on Gelation mechanism of silica-alumina based mate-rials made from coal gangue[J].Materials Review,2007,21(9):91(in Chinese).
李化建.煤矸石质硅铝基材料胶凝机理的研究[J].材料导报,2007,21(9):91.
36 Zhang Y S, Sun W, et al, Lin W. In suit quantitatively tracking the hydration process of interfacial transition zone between coarse aggregate and K-PSDS geopolymer matrix with ESEM [J].Journal of the Chinese Ceramic Society,2005,33(8):276(in Chinese).
张云升,孙伟,林玮,等.用环境扫描电镜原位定量追踪K-PSDS型地聚合物混凝土界面区的水化过程[J].硅酸盐学报,2003,31(8):806.
37 Miranda J M, Fernández-Jiménez A, González J A, et al. Corrosion resistance in activated fly ash mortars[J].Cement & Concrete Research,2005,35(6):1210.
38 Chang J J. A study on the setting characteristics of sodium silicate-activated slag pastes[J].Cement & Concrete Research,2003,33(7):1005.
39 Lee W K W, Deventer J S J V. Effects of anions on the formation of aluminosilicate gel in geopolymers[J].Industrial & Engineering Chemistry Research,2002,41(18):4550.
40 Bilim C, Karahan O, Ati C D, et al. Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions[J].Materials & Design,2013,44:540.
41 Tailby J, Mackenzie K J D. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals[J].Cement & Concrete Research,2010,40(5):787.
42 Nicholson C, Murray B, Fletcher R, et al. Novel geopolymer materials containing borate and phosphate structural units[C]∥World Congress Geopolymer 2005.Saint Quentin,2005:140.
43 Shi C, Li Y. Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement[J].Cement & Concrete Research,1989,19(4):527.
44 Kukko H, Mannonen R. Chemical and mechanical properties of alkali-activated blast furnace slag (f-concrete)[M].Australian:Nordic Concrete Research,1982:52.
45 Bakharev T, Sanjayan J G, Cheng Y B. Effect of admixtures on properties of alkali-activated slag concrete[J].Cement & Concrete Research,2000,30(9):1367.
46 Douglas E, Brandstetr J. A preliminary study on the alkali activation of ground granulated blast-furnace slag[J].Cement & Concrete Research,1990,20(5):746.
47 Wang S D, Scrivener K L, Pratt P L. Factors affecting the strength of alkali-activated slag[J].Cement & Concrete Research,1994,24(6):1033.
48 Puertas F, Palomo A, Fernandez-Jimenez A, et al. Effect of superplasticisers on the behaviour and properties of alkaline cements[J].Advances in Cement Research,2003,15(1):23.
49 Kong D L Y, Sanjayan J G. Effect of elevated temperatures on geopolymer paste, mortar and concrete[J].Cement & Concrete Research,2010,40(2):334.
50 Criado M, Palomo A, Fernández-Jiménez A, et al. Alkali activated fly ash: Effect of admixtures on paste rheology[J].Rheologica Acta,2009,48(4):447.
51 Palacios M, Puertas F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars[J].Cement & Concrete Research,2005,35(7):1358.
52 Palacios M, Puertas F. Stability of superplasticizer and shrinkage-reducing admixtures in high basic media[J].Materiales de Construcción,2004,54(276):65.
53 Bakharev T, Sanjayan J G, Cheng Y B. Effect of admixtures on properties of alkali-activated slag concrete[J].Cement & Concrete Research,2000,30(9):1367.
54 Lloyd N A, Rangan B V. Geopolymer concrete with fly ash[J].Australian Journal of Structural Engineering,2010,21(3):1493.
55 Anuradha R, Sreevidya V, Venkatasubramani R, et al. Modified guidelines for geopolymer concrete mix design using Indian standard[J].Asian Journal of Civil Engineering,2012,13(3):353.
56 Ferdous M W, Kayali O, Khennane A. A detailed procedure of mix design for fly ash based geopolymer concrete[C]∥4th Asia-Pacific Conference on FRP in Structures.Melbourne,2013:11.
57 Pavithra P, Reddy M S, Dinakar P, et al. A mix design procedure for geopolymer concrete with fly ash[J].Journal of Cleaner Production,2016,133:117.
58 Montes C, Gomez S A, Khadka N, et al. Statistical software to improve the accuracy of geopolymer concrete mix design and proportioning[C]∥2013 World of Coal Ash Conference.Lexington,2013:18.
59 Duxson P, Provis J L. Designing precursors for geopolymer cements[J].Journal of the American Ceramic Society,2010,91(12):3864.
60 Jamkar S S, Ghugal Y M, Patankar S V. Effect of fly ash fineness on workability and compressive strength of geopolymer concrete[J].Indian Concrete Journal,2013,87(4):57.
61 Patankar S V, Ghugal Y M, Jamkar S S. Mix design of fly ash based geopolymer concrete[J].Advances in Structural Engineering,2015,3:1619.
62 Diaz E I, Allouche E N. Recycling of fly ash into geopolymer concrete:Creation of a database[C]∥Green Technologies Conference.USA,2010:1.
63 Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O[J].Cement & Concrete Research,2011,41(9):923.
64 Adam A. Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete[D].Melbourne:RMIT University,2009:12.
65 Bernal S A, Provis J L, Walkley B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accele-rated carbonation[J].Cement & Concrete Research,2013,53(2):127.
66 Bernal S A, Nicolas R S, Myers R J, et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders[J].Cement & Concrete Research,2013,57(3):33.
67 Criado M, Palomo A, Fernández-Jiménez A. Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products[J].Fuel,2005,84(16):2048.
68 Bakharev T, Sanjayan J G, Cheng Y B. Resistance of alkali-activated slag concrete to carbonation[J].Cement & Concrete Research,2001,31(31):1277.
69 Puertas F, Palacios M, Vázquez T. Carbonation process of alkali-activated slag mortars[J].Journal of Materials Science,2006,41(10):3071.
70 Bernal S A, Gutiérrez R M D, Provis J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends[J].Construction & Building Materials,2012,33(7):99.
71 Fu Y, Cai L, Wu Y. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete[J].Construction & Building Materials,2011,25(7):3144.
72 Doleal J, kvára F, Svoboda P, et al. Concrete based on fly ash geopolymers[J].Construction & Building Materials,2006,29(3):1.
73 kvára F, Jílek T, Kopecky' L. Geopolymer materials based on fly ash[J].Ceramics Silikaty,2005,49(3):195.
74 Brooks R, Bahadory M, Tovia F, et al. Properties of alkali-activated fly ash: High performance to lightweight[J].International Journal of Sustainable Engineering,2010,3(3):211.
75 Rostami H, Brendley W. Alkali ash material: A novel fly ash-based cement[J].Environmental Science & Technology,2003,37(15):3454.
76 Rangan B V. Geopolymers[M].Australian:Woodhead Publishing,2009:211.
77 Tennakoon C, Shayan A, Sanjayan J G. Influence of binder on alkali reactivity of aggregates in geopolymer concrete[C]∥Concrete 27th National Biennial Conference of the Concrete Institute of Australia.Australia,2015:1089.
78 Gifford P M, Gillott J E. Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete[J].Cement & Concrete Research,1996,26(1):21.
79 Krivenko P, Drochytka R, Gelevera A, et al. Mechanism of preventing the alkali-aggregate reaction in alkali activated cement concretes[J].Cement & Concrete Composites,2014,45(1):157.
80 Sagoe-Crentsil K, Weng L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part Ⅱ. High Si/Al ratio systems[J].Journal of Materials Science,2007,42(9):3007.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[9] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed