Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1182-1189    https://doi.org/10.11896/cldb.18010102
  金属与金属基复合材料 |
长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用
李响, 毛萍莉, 王峰, 王志, 刘正, 周乐
沈阳工业大学材料科学与工程学院,沈阳 110870
A Literature Review on Study of Long-period Stacking Ordered Phase and Its Effect on magnesium Alloys
LI Xiang, MAO Pingli, WANG Feng, WANG Zhi, LIU Zheng, ZHOU Le
School of materials Science and Engineering,Shenyang University of Technology, Shenyang 110870
下载:  全 文 ( PDF ) ( 22046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金由于具有较高的比强度、比刚度以及良好的成形性和切屑加工性等优点,在航空航天、交通以及电子产品等领域获得了广泛的应用。但是由于镁合金的绝对强度较低,使其在结构件的应用上受到了一定的限制。近年来,采用稀土元素来提高镁合金的强度已成为镁合金研究领域的热点,尤其是mg-Zn-Y镁合金。由于m(Y)/m(Zn)比的变化,mg-Zn-Y中的强化相也逐渐产生变化,当m(Y)/m(Zn)>1时,在mg-Zn-Y合金中出现与镁合金基体完全共格、但富含Y、Zn元素的结构及化学成分均有序的长周期堆垛有序相(LPSO)。相比于其他第二相,LPSO相具有高硬度、良好的热稳定性、良好的阻尼性能、高抗蠕变性能、高弹性模量等特点,因此,这种新型结构强化相在镁合金中对其力学性能的影响引起了研究人员的广泛关注,成为目前镁合金强韧化的研究热点。
近几年的研究多是通过快速凝固粉末冶金、铜模铸造、溶体甩带等不同的铸造方法制备出含LPSO相的镁合金,并通过改变溶质原子种类、含量及比例的方法来探究LPSO相对镁合金性能的影响,之后通过热处理、挤压和轧制等加工工艺对LPSO相的数量、尺寸和分布进行调控,进而提高镁合金的性能。而有关LPSO相的微观结构,如LPSO相结构中各原子的排列方式和具体位置等,通过第一性原理计算模拟、选区电子衍射(SADP)、高分辨率透射(HRTEm)及高角环形暗场像扫描电子显微镜(HAADF-STEm)等方法进行研究,已经建立了一个比较完善的LPSO相结构模型。同时,近几年对镁合金凝固和变形过程LPSO相结构中原子的运动研究也有了突破性的进展。在21世纪初,有研究人员通过快速凝固和热挤压的方法制备出的mg97Zn1Y2(原子分数)合金的屈服强度和延伸率分别达到了610 mPa和5%,这些优异的力学性能归因于纳米级的LPSO相。
本文综述了镁合金中LPSO相的形成机制、类型及其含LPSO相的合金体系,并对LPSO相的结构堆垛有序和化学成分有序进行了详尽的叙述,同时分析了LPSO相提高镁合金强度、塑性、抗蠕变性及高阻尼性能的机理;阐述了含LPSO相镁合金的制备工艺对其性能产生的影响;最后对含LPSO相镁合金的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李响
毛萍莉
王峰
王志
刘正
周乐
关键词:  镁合金  LPSO相  力学性能  强韧化机理    
Abstract: magnesium alloys have been extensively applied in the field of aeronautics and space, transportation and electric devices, thanks to their high specific strength, specific stiffness and good processing and machinery ability. Unfortunately, magnesium alloys bear relatively low absolute strength, which seriously hinders their application as structural components. In recent years, employing rear earth element to enhance the strength of magnesium alloys has been a research hot spot, especially the research of mg-Zn-Y alloy. In mg-Zn-Y alloy, the variation of m(Y)/m(Zn) ratio will lead to the alteration of the strengthening phase. When m(Y)/m(Zn) ratio exceeds 1, a unique phase, named as long-period ordered stacking phase (LPSO), was found in mg-Zn-Y alloy, which possesses complete coherent interface with α-mg matrix, both structural and chemical order, and rich of Y and/or Zn. In compared with other secondary phases, the LPSO phase is superior in hardness, thermal stability, dam-ping property, creep resistance and modulus. Accordingly, the impact of this novel structural strengthening phase on the mechanical properties of magnesium alloys has aroused numerous interests of researchers, and become the focus of research on the strengthening and toughening of magnesium alloys.
Recent researches are mostly concentrate on preparing magnesium alloys containing LPSO phase by means of rapid solidification powder metallurgy, copper mold casting, melt stripping and so forth; exploring the effect of LPSO phase on the properties of magnesium alloys by changing the types, amounts and proportions of solute atoms; improving the properties of magnesium alloys by regulating the amount, size and distribution of LPSO phase through heat treatment, extrusion and rolling processes. Concerning the research of microstructure of the LPSO phase, including the arrangement of each atom in the LPSO phase structure, and their specific location, first principle calculation, electoral electron diffraction (SADP), high resolution transmission (HRTEm) and high angle annular dark field image scanning electron microscope (HAADF-STEm) have been introduced in these studies, and a well-developed LPSO phase structure model has been established. A breakthrough has been achieved in the study of the movement of atoms in the LPSO phase structure during the solidification and deformation of magnesium alloys in recent years. In the early 21st century, the yield strength and elongation of the mg97Zn1Y2 (atom fraction)alloys prepared by rapid solidification and hot extrusion reached 610 mPa and 5%, respectively, and these excellent mechanical properties were attributed to the nanoscale LPSO phase.
In thisarticle, we provide a detailed review on the formation mechanism, type of LPSO phase and alloy system with LPSO phase in magnesium alloys, as well as the order of structure and chemical composition in LPSO, and a deep analysis on the mechanism of enhancing strength, plasticity, creep resistance and high damping performance of magnesium alloys by LPSO phase. We also summarize the impact of the preparation process of LPSO contained magnesium alloys on their properties. Finally, we look forward the development direction of LPSO phase magnesium alloy.
Key words:  magnesium alloys    LPSO phase    mechanical properties    strengthening and toughening mechanism
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TG146.2  
基金资助: 2017年沈阳市科技计划项目(17-9-6-00)
通讯作者:  maopl@sut.edu.cn   
作者简介:  李响,2016年6月毕业于大连工业大学,获得工学学士学位,现为沈阳工业大学硕士研究生,在毛萍莉教授的指导下进行研究,目前主要研究含LPSO相镁合金的性能。毛萍莉,沈阳工业大学材料科学与工程学院教授 、博士研究生导师,中国科学院博士,曾在美国弗罗里达州立大学国家高磁场实验室做博士后研究,辽宁省特聘教授。曾获机械工业科技进步二等奖、辽宁省技术发明二等奖、辽宁省教育教学改革成果一等奖各一项;承担及参与国家技术支撑、国际合作、973等国家计划以及辽宁省自然科学基金、创新团队、沈阳市人才专项等20余项项目;已发表学术论文100余篇。主要从事高性能镁合金新材料的设计与制备。
引用本文:    
李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
LI Xiang, mAO Pingli, WANG Feng, WANG Zhi, LIU Zheng, ZHOU Le. A Literature Review on Study of Long-period Stacking Ordered Phase and Its Effect on magnesium Alloys. Materials Reports, 2019, 33(7): 1182-1189.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010102  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1182
1 Ding W J.Science and technology of magnesium alloy, Science Press, China, 2007 (in Chinese).
丁文江. 镁合金科学与技术,科学出版社, 2007.
2 Pollock T m.Science, 2010, 328(5981), 986.
3 Schumann S, Friedrich H E.materials Science Forum, 2003, 419-422, 51.
4 Kainer K U. magnesium alloys and their applications, Deutsche Bibliothek Press, Germany, 2000.
5 Li W X.magnesium and magnesium alloy,Central South University Press, China, 2005 (in Chinese).
黎文献. 镁及镁合金,中南大学出版社,2005.
6 Luo Z, Zhang S, Tang Y, et al.Journal of Alloys & Compounds, 1994, 209(1-2), 275.
7 Tane m, Nagai Y, Kimizuka H, et al.Acta materialia, 2013, 61(17), 6338.
8 Hagihara K, Kinoshita A, Sugino Y, et al.Acta materialia, 2010, 58(19), 6282.
9 Kawamura Y, Hayashi K, Inoue A, et al.materials Transactions, 2001, 42(7), 1172.
10 Inoue A, Kawamura Y, matsushita m, et al.Journal of materials Research, 2001, 16(7), 1894.
11 Amiya K, Ohsuna T, Inoue A.materials Transactions, 2005, 44(10), 2151.
12 Kawamura Y, Yamasaki m.materials Transactions, 2007, 48(11), 2986.
13 Yamasaki m, matsushita m, Hagihara K, et al.Scripta materialia, 2014, 78-79(5), 13.
14 Tang P Y, Zeng m X, Li D L, et al. Advanced materials Research, 2011, 233-235, 2359.
15 Kawamura Y, Kasahara T, Izumi S, et al.Scripta materialia, 2006, 55(5), 453.
16 ma H, Shi L L, Xu J, et al.Journal of materials Research, 2007, 22(2), 314.
17 Jin Q Q, Fang C F, mi S B.Journal of Alloys & Compounds, 2013, 568, 21.
18 mi S B, Jin Q Q.Scripta materialia, 2013, 68(8), 635.
19 Yokobayashi H, Kishida K, Inui H, et al.Acta materialia, 2011, 59(19), 7287.
20 Zhang J, Zhang L, Leng Z, et al.Scripta materialia, 2013, 68(9), 675.
21 Abe E, Kawamura Y,Hayashi K, et al. Acta materialia, 2002, 50(15), 3845.
22 Wang H m, Wang Y F.materials Review, 2010, 24(s1), 467 (in Chinese).
王红梅, 王宇飞. 材料导报, 2010, 24(专辑15), 467.
23 matsuda m, Ii S, Kawamura Y.materials Science & Engineering A, 2005, 393(1), 269.
24 Luo Z P, Zhang S Q. Journal of materials Science Letters, 2000, 19(9), 813.
25 matsuura m, Sakurai m, Amiya K, et al.Journal of Alloys & Compounds, 2003, 353(1-2), 240.
26 Nie J F, Oh-Ishi K, Gao X, et al.Acta materialia, 2008, 56(20), 6061.
27 Zhu Y m, morton A J, Nie J F.Acta materialia, 2010, 58(8), 2936.
28 Zhu Y m, Weyland m, morton A J, et al.Scripta materialia, 2009, 60(11), 980.
29 Kirkland E J, Loane R F, Silcox J.Ultramicroscopy, 1987, 23(1), 77.
30 Pennycook S J, Jesson D E. Ultramicroscopy, 1991, 37(1), 14.
31 Pennycook S J, Jesson D E.Acta materialia, 1992, 40, S149.
32 Itoi T, Seimiya T, Kawamura Y, et al. Scripta materialia, 2004, 51(2), 107.
33 Zhu Y m, morton A J, Nie J F. Acta materialia, 2012, 60(19), 6562.
34 Hagihara K, Yokotani N, Umakoshi Y. Intermetallics, 2010, 18(2), 267.
35 Nie J F, Zhu Y m, morton A J. metallurgical & materials Transactions A, 2014, 45(8), 3338.
36 Abe E, Ono A, Itoi T, et al. Philosophical magazine Letters, 2011, 91(10), 690.
37 Egusa D, Abe E. Acta materialia, 2012, 60(1), 166.
38 Ono A, Abe E, Itoi T, et al. materials Transactions, 2008, 49(5), 990.
39 Polmear I J. metal Science Journal, 1994, 10(1), 1.
40 Hort N, Huang Y D, Kainer K U. Advanced Engineering materials, 2006, 8, 235.
41 Hisa m, Barry J, Dunlop G. Philosophical magazine A, 2002, 82(3), 497.
42 Kishida K, Nagai K, matsumoto A, et al. Data in Brief, 2015, 5(C), 314.
43 Avedesian m m, Baker H. In: ASm International. metals Park, OH, 1999, pp. 258.
44 Oñorbe E, Garcés G, Pérez P, et al. Journal of materials Science, 2012, 47(2), 1085.
45 mine Y, Yoshimura H, matsuda m, et al. materials Science & Enginee-ring A, 2013, 570(19), 63.
46 He Z L, Fu P H, Wu Y J, et al. materials Science & Engineering A, 2013, 587(1), 72.
47 He Z L, Peng L m, Fu P H, et al. materials Science & Engineering A, 2014, 604(15), 78.
48 Jiang Y, Tang B Y. Journal of Guangxi University, 2011, 36(6), 887 (in Chinese).
蒋毅,唐壁玉. 广西大学学报, 2011, 36(6), 887.
49 matsuda m, Ando S, Nishida m. materials Transactions, 2005, 46(2), 361.
50 Bi G L. microstructure, mechanical properties and deformation mechanisms of mg-Dy-Zn alloys. Ph.D. Thesis, Jilin University, China, 2011 (in Chinese).
毕广利 . mg-Dy-Zn合金的显微组织力学性能和变形机理. 博士学位论文, 吉林大学, 2011.
51 Yamasaki m, Hagihara K, Inoue S I, et al. Acta materialia, 2013, 61(6), 2065.
52 Ge T S. Theoretical basis of solid internal friction, Science Press, China, 2000 (in Chinese).
葛庭燧.固体内耗理论基础, 科学出版社, 2000.
53 Ha K F. microcosmic theory of mechanical properties of metals, Science Press, China, 1983 (in Chinese).
哈宽富.金属力学性质的微观理论, 科学出版社, 1983.
54 Wang C Z. material properties, Beijing University of Technology Press, China, 2001 (in Chinese).
王从曾. 材料性能学, 北京工业大学出版社, 2001.
55 Lu R P. microstructure evolution of LPSO phase and the corresponding damping capacities and mechanical properties in mg-Zn-Y alloys. Ph.D. Thesis, Chongqing University, China, 2015 (in Chinese).
鲁若鹏. mg-Zn-Y 合金中LPSO相的调控及其对阻尼和力学性能的影响机制研究. 博士学位论文,重庆大学, 2015.
56 Wang J F, Wei W W, Pan F S, et al. materials Review A:Review Papers, 2009, 23(7), 15 (in Chinese).
王敬丰, 魏文文, 潘复生,等.材料导报:综述篇, 2009, 23(7), 15.
57 Chino Y, mabuchi m, Hagiwara S, et al. Scripta materialia, 2004, 51(7), 711.
58 Huang T H, Song P, Zhou H H, et al. Rare metal materials and Engineering, 2016, 45(2), 431 (in Chinese).
黄太红, 宋鹏, 周会会,等.稀有金属材料与工程, 2016, 45(2), 431.
59 Li D J, Zeng X Q, Dong J, et al. Journal of Alloys & Compounds, 2009, 468(1), 164.
60 Garces G, Perez P, Cabeza S, et al. metallurgical & materials Transactions A, 2017, 48(11), 5332.
61 Tan X, Chee W, Chan J, et al. metals & materials International, 2017, 23(4), 699.
62 Wang J F, Huang X H, Xie F Z, et al. Transactions of Nonferrous metals Society of China, 2016, 26(8), 1588 (in Chinese).
王敬丰, 黄秀洪, 谢飞舟,等. 中国有色金属学报, 2016, 26(8), 1588.
63 meng L G. Researches on formation mechanism of the LPSO structure, microstructures and mechanical properties of the mg-Gd-Y-Zn-Zr alloys. Ph.D. Thesis, Dalian University of Technology, China, 2014 (in Chinese).
孟令刚. mg-Gd-Y-Zn-Zr合金长周期结构形成机制与组织性能研究. 博士学位论文, 大连理工大学, 2014.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed