Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 834-840    https://doi.org/10.11896/cldb.201905016
  金属与金属基复合材料 |
镁合金的应力腐蚀开裂:机理、影响因素、防护技术
宋雨来, 付洪德, 王震, 杨鹏聪
吉林大学材料科学与工程学院,长春 130022
Stress Corrosion Cracking of Magnesium Alloys:Mechanism, Influencing Factors, and Prevention Technology
SONG Yulai, FU Hongde, WANG Zhen, YANG Pengcong
College of Materials Science and Engineering, Jilin University, Changchun 130022
下载:  全 文 ( PDF ) ( 2392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着节能、环保要求的日益提高,环境友好型结构材料的开发及应用受到越来越高的关注。镁合金由于对环境污染小、可回收利用率高等优点而极受世人青睐,成为21世纪最具发展前景的商用轻质材料,被广泛应用于航空航天、计算机、通讯等工业领域。
然而,镁合金在应用过程中暴露出许多问题。由于镁活泼的化学性质导致镁合金在服役环境下极易受到腐蚀,例如在潮湿大气、海洋、含硫气氛中都能使镁合金发生点蚀、电偶腐蚀、晶间腐蚀等,使得镁合金结构件的整体或局部受到破坏。特别是在腐蚀和外力的双重作用下,镁合金将发生应力腐蚀开裂,导致结构件发生脆断。近年来,由于镁合金应力腐蚀开裂引起的结构失效案例逐年上升,造成了巨大的经济损失。目前,关于镁合金应力腐蚀开裂的研究主要集中于机理、影响因素和防护措施等方面。国内外学者相关研究表明,镁合金应力腐蚀开裂的机理总体上主要分为阳极溶解和氢脆两种理论,其中滑移溶解和氢局部增塑分别为两种理论的主流观点。但由于镁合金材料、服役环境的多样性以及力学、电化学腐蚀行为的复杂性,现有理论机理缺乏普遍适用性,且部分缺少直接实验验证,急需进一步系统研究。镁合金抗应力腐蚀性能受到镁合金服役环境、镁合金本身的加工工艺以及镁合金中的合金元素等诸多因素的影响。因此,依据应力腐蚀机理,结合影响因素,通过合理添加合金元素开发出新的镁合金,镁合金表面激光冲击改性或表面涂层,镁合金热处理、变质处理等方法都能够很好地降低镁合金应力腐蚀开裂的敏感性。特别是添加稀土元素,例如铒、铈等,能够使得镁合金组织优化,且能形成新的稀土相,对降低其应力腐蚀开裂敏感性的效果显著。
本文系统归纳了镁合金应力腐蚀开裂的研究进展,分别对镁合金应力腐蚀开裂机理、影响因素以及其防护措施进行了论述,着重介绍了近十年来国内外的相关研究成果,并提出了镁合金应力腐蚀开裂领域未来的研究方向以及亟待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋雨来
付洪德
王震
杨鹏聪
关键词:  镁合金  应力腐蚀  影响因素  防护技术    
Abstract: With the increasing requirements for energy saving and environmental protection, the development and application of environmentally friendly structural materials have attracted enormous attention. Thanks to their low environmental pollution and high recycling efficiency. Magnesium alloys have become the most promising commercial lightweight materials in the 21st century, with widespread application in aerospace, computer, communications and other industrial fields.
Unfortunately, many problems have also been exposed duringthe application of magnesium alloys. Suffering from the active chemical nature of magnesium, magnesium alloys are highly susceptible to corrosion in the service environment. For example, pitting corrosion, galvanic corrosion, and intergranular corrosion are likely to occur in magnesium alloys in humid atmospheres, marine atmospheres, and sulfur-containing atmospheres, leading to the whole or partial failure of structural parts of the magnesium alloy. Particularly, stress corrosion cracking of magnesium alloys may take place under the combined effects of corrosion and external force, resulting in brittle fracture of structural components. In recent years, there is a continuous increase in structural failure cases caused by stress corrosion cracking of magnesium alloys, which bring about huge economic losses. Therefore, great efforts have been put in the research work on stress corrosion cracking of magnesium alloys, focusing on their mechanism, influencing factors, and protective technologies.According to relevant studies by scholars at home and abroad, the stress corrosion cracking mechanism of magnesium alloyscan be generally explained by two major theories, namely, anodic dissolution and hydrogen embrittlement. Specifically, slipping dissolution theory and localized plasticization of hydrogen are recognized as the main viewpoints of the above mentioned two theories, respectively. However, owing to the diversity of magnesium alloy materials, service environment, and the complexity of mechanical and electrochemical corrosion behaviors, the existing theoretical mechanisms lack universal applicability and direct experimental verification. Consequently, further systematic research is urgently needed. The stress corrosion resistance of magnesium alloys is affected by multiple factors such as the service environments, the processing parameters, and the alloy elements in the magnesium alloy. Therefore, according to the stress corrosion mechanism, and taking the influencing factors into consideration, stress corrosion cracking sensitivity of the magnesium alloy can be effectively reduce by reasonable addition of alloying elements to develop new magnesium alloy, surface laser shock modification or surface coating, heat treatment, modification treatment of magnesium alloy. Especially, the addition of rare earth elements like erbium and cerium contri-bute to optimizing the microstructure of the magnesium alloy and forming new rare earth phases, which exert favorable effect on reducing the stress corrosion cracking susceptibility.
In this article, the research progress of stress corrosion cracking of magnesium alloys is systematically summarized, and the stress corrosion cracking mechanism, influencing factors, and protective measures of magnesium alloys are discussed. The relevant research results at home and abroad in the past ten years are emphatically introduced. Meanwhile, future research directions and urgent issues in the field of stress corrosion cracking of magnesium alloys are also proposed.
Key words:  magnesium alloy    stress corrosion cracking    influence factor    protection technology
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TG178  
基金资助: 国家自然科学基金(50901035);吉林省自然科学基金(20140101051JC)
作者简介:  宋雨来,吉林大学先材料科学与工程学院副教授、硕士研究生导师。主要从事镁合金腐蚀与防护技术的研究工作,包括应力腐蚀、点蚀、电偶腐蚀、微弧氧化、激光熔覆等。songyulai2005@jlu.edu.com
引用本文:    
宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
SONG Yulai, FU Hongde, WANG Zhen, YANG Pengcong. Stress Corrosion Cracking of Magnesium Alloys:Mechanism, Influencing Factors, and Prevention Technology. Materials Reports, 2019, 33(5): 834-840.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905016  或          http://www.mater-rep.com/CN/Y2019/V33/I5/834
1 Chen Q W, Tang A T, Xu T Y, et al.Materials Review A:Review Papers,2016,30(9),1(in Chinese).
陈巧旺,汤爱涛,许婷熠,等.材料导报:综述篇,2016,30(9),1.
2 Taltavull C, Shi Z, Torres B, et al.Journal of Materials Science in Medicine,2014,25(2),329.
3 Hornberger H, Virtanen S, Boccaccini A R.Acta Biomaterialia,2012,8(7),2442.
4 Willumeit R, Fischer J, Feyerabend F, et al.Acta Biomaterialia,2011,7(6),2704.
5 Zeng R C, Zhang J, Huang W J, et al.Transaction of Nonferrous Metals Society of China,2006,16(1),763.
6 Zenger C, Kainer K, Blawert C, et al.Journal of Alloys and Compounds,2011,509(13),4462.
7 Zeng F C.Gansu Metallurgy,2006,28(4),16(in Chinese).
曾发翠.甘肃冶金,2006,28(4),16.
8 Atrens A, Liu M, Zainal N I, et al.Materials Science & Engineering B,2011,176(20),1609.
9 Ghali E, Dietzel W, Kainer K U. Journal of Materials Engineering & Performance,2004,13(1),7.
10 Wang W Q, Pan F S, Zuo R L.Ordnance Material Science and Enginee-ring,2006,29(2),73(in Chinese).
王维青,潘复生,左汝林.兵器材料科学与工程,2006,29(2),73.
11 Logan H L.Corrosion Science,1965,5(10),729.
12 Srinivasan P B, Blawert C, Dietzel W, et al.Scripta Materialia,2008,59(1),43.
13 Srinivasan P B, Blawert C, Dietzel W, et al.Material Science and Engineering A,2008,494(1-2),401.
14 Atrens A, Song G L, Liu M, et al.Advanced Engineering Materials,2015,17(4),400.
15 Winzer N, Atrens A, Dietzel W, et al.Materials Science and Engineering A,2008,488(1),339.
16 Woodtil J, Kieselbach R.Engineering Failure Analysis,2000,7(6),427.
17 Winzer N, Atrens A, Dietzel W, et al.Metallurgical & Materials Transactions A,2008,39(5),1157.
18 Song R G, Blawert C, Dietzel W, et al.Materials Science and Engineering A,2005,399(1-2),308.
19 Chen J, Wang J Q, Han E H, et al.Acta Metallurgica Sinica,2016,29(1),1.
20 Chen J, Ai M R, Wang J Q, et al.Corrosion Science,2009,51(5),1197.
21 Chen J, Wang J Q, Han E H, et al.Corrosion Science,2008,50(5),1292.
22 Chen J, Dong J H, Wang J Q, et al.Corrosion Science,2008,50(12),3610.
23 Winzer N, Atrens A, Dietzel W, et al.Materials Science and Engineering A,2007,466(1-2),18.
24 Qi W J, Song R G, Zhang Y, et al.Corrosion Engineering Science and Technology,2015,50(6),480.
25 Schimmel H G, Kearley G J, Huot J, et al.Journal of Alloys and Compounds,2005,404,235.
26 Nishimura C, Komaki M, Amano M.Journal of Alloys and Compounds,1999,s293-295(51),329.
27 Atrens A, Winzer N, Song G L, et al.Advanced Engineering Materials,2006,8(8),749.
28 Atrens A, Winzer N, Dietzel W, et al.Advanced Engineering Materials,2009,13(1-2),11.
29 Kuramoto S, Araki I, Kanno M.Journal of Japan Institute of Light Meta-ls,2001,51(51),397.
30 Lynch S P, Trevena P.Corrosion,1988,44(2),113.
31 Moody N R, Thompson A W, Ricker R E, et al.Hydrogen effects on materials behavior and corrosion deformation interactions, TMS, Warrendale,2003.
32 Meletis E, Hochman R.Corrosion,1984,40(1),39.
33 Gangloff R P. In: Hydrogen-assisted Cracking Comprehensive Structural Integrity,2003,pp.31.
34 Kannan M B, Dietzel W, Lyon P, et al.Scripta Materialia,2007,57(7),579.
35 Zhu L W, He X L, Wei Y H, et al.Rare Metal Materials and Enginee-ring,2015,44(10),481(in Chinese).
朱立文,贺秀丽,卫英慧,等.稀有金属材料与工程,2015,44(10),2481.
36 Wu Z N, Li P J, Liu S X, et al.Foundry,2001,50(10)583(in Chinese).
吴振宁,李培杰,刘树勋,等.铸造,2001,50(10),583.
37 Xu Y, Li J X, Li S.Materials Science and Technology,2008,16(3),314(in Chinese).
许越,李家学,李莎.材料科学与工艺,2008,16(3),314.
38 Zhang X, Zhang K.Corrosion Science and Protection Technology,2015,27(1),78(in Chinese).
张新,张奎.腐蚀科学与防护技术,2015,27(1),78.
39 Avedesian M M, Baker H.Magnesium and Magnesium Alloys. ASM International, USA,1999.
40 Fairman L, Bray H J.Corrosion Science,1971,11(7),533.
41 Chen L X, Bin Y H, Zou W Q, et al.Journal of the Mechanical Behavior of Biomedical Materials,2017,66,187.
42 Zhou W Q.Journal of Shenyang Normal University(Natural Science),2012,30(1),1(in Chinese).
周婉秋.沈阳师范大学学报(自然科学版),2012,30(1),1.
43 Zhang Y, Xu Y. Journal of Harbin Institute of Technology,2009,41(6),87(in Chinese).
张勇,许越.哈尔滨工业大学学报,2009,41(6),87.
44 Chen J, Wang J Q, Han E H, et al.Materials Science and Engineering A,2008,488(1-2),428.
45 Chen J, Ai M Y, Wang J Q, et al.Materials Science and Engineering A,2009,515(1),79.
46 Wang J Q, Chen J, Han E H, et al.Materials Transactions,2008,49(5),1052.
47 Zhang Y, Zhou X H, Wei Z L, et al.Material Science Forum,2010,650,272.
48 Kannan M B, Dietzel W.Materials and Design,2012,42,321.
49 Choudhary L, Raman P K S.Engineering Fracture Mechanics,2013,103(4),94.
50 Jafari S, Raman R K S, Davies C H, et al.Journal of the Mechanical Behavior of Biomedical Materials,2017,65,634.
51 Choudhary L, Szmerling J, Goldwasser R, et al.Procedia Engineering,2011,10(7),518.
52 Qiang M S, Jiang J H, Song D, et al. Corrosion and Protection,2015,36(7),677(in Chinese).
强明闪,江静华,宋丹,等.腐蚀与防护,2015,36(7),677.
53 Li H H, Chen T J, Hao Y, et al.Foundry,2006,55(8),835(in Chinese).
李海宏,陈体军,郝远,等.铸造,2006,55(8),835.
54 Hakimi O, Aghion E, Goldman J.Materials Science and Engineering C,2015,51,226.
55 Kannan M B, Dietzel W, Blawert C, et al.Materials Science and Engineering A,2008,480(1),529.
56 Padekar B S, Raja V S, Raman P K S, et al.Materials Science and Engineering A,2013,583(11),169.
57 Padekar B S, Raman R K S, Raja V S, et al.Corrosion Science,2013,71(6),1.
58 Padekar B S, Raja V S, Raman R K S, et al.Materials Science Forum,2011,690,361.
59 Cao F Y, Shi Z M, Song G L, et al.Corrosion Science,2015,98,6.
60 Duan H Q, Wang L S, Cai Q Z, et al.China Mechanical Engineering,2003,14(20),1789(in Chinese).
段汉桥,王立世,蔡启舟,等.中国机械工程,2003,14(20),1789.
61 Song Y L, Wang Z, Liu Y H, et al.Advanced Engineering Materials,2017,doi 10.1002.
62 Srinivasan P B, Blawert C, Dietzel W.Corrosion Science,2008,50(8),2415.
63 Lu C.Light Industry Machinery,2014,32(4),9(in Chinese).
卢超.轻工机械,2014,32(4),9.
64 Li X C, Zhang Y K, Chen J F, et al.Materials Science and Technology,2013,29(5),626.
65 Caralapatti V K, Narayanswamy S.Optics and Laser Technology,2017,88,75.
66 Ge M Z, Xiang J Y, Yang L, et al.Surface and Coatings Technology,2017,310,157.
67 Zhang Y K, You J, Lu J Z, et al.Surface and Coatings Technology,2010,204(24),3947.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[4] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[5] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[6] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[7] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[8] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[9] 王春明,杨牧南,黄建辉,刘位江,梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[10] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[11] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[12] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[13] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[14] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[15] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed