Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2019-2024    https://doi.org/10.11896/cldb.18020067
  金属与金属基复合材料 |
P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究
石磊1,2, 柳翊1, 沈俊芳1, 金文中1, 王黎1, 张伟1
1 洛阳理工学院材料科学与工程学院,洛阳 471023
2 河南科技大学材料科学与工程学院,洛阳 471023
Simulation and Experimental Study on Grain Size Evolution of P-ECAP Extrusion Magnesium Alloy Hollow Plate
SHI Lei1,2, LIU Yi1, SHEN Junfang1, JIN Wenzhong1, WANG Li1, ZHANG Wei1
1 School of Material Science & Engineering, Luoyang Institute of Science and Technology, Luoyang 471023
2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023
下载:  全 文 ( PDF ) ( 2737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了确定工艺参数对挤压ZK60镁合金壁板晶粒度的影响规律,利用有限元法模拟预测了再结晶过程中晶粒度的演变规律,并通过实验验证了模拟结果。研究分为三个步骤:首先通过等温热压缩实验获得了ZK60镁合金在热变形过程中的微观组织;其次,通过分析微观组织与工艺参数之间的内在联系,利用线性变换和线性拟合获得了一套可用于DEFORM-3D软件的动态再结晶模型方程组,并在此基础上建立了等通道转角分流挤压ZK60镁合金空心壁板的微观组织演变有限元模型;最后模拟并通过实验验证了晶粒度演变。结果表明:随着温度的升高和挤压速度的增大,晶粒尺寸变大,加强筋附近的晶粒尺寸比其他区域略大。工件最前端为粗大的不完全再结晶晶粒,其他区域纵切面上为被拉长的晶粒和等轴晶组合结构,横切面上为等轴晶。本研究阐明了镁合金在挤压变形过程中晶粒度演变的预测方法、影响因素及影响规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石磊
柳翊
沈俊芳
金文中
王黎
张伟
关键词:  镁合金  动态再结晶  挤压  有限元模拟    
Abstract: In order to confirm the optimum extrusion parameters for ZK60 magnesium alloy,the influences of extrusion parameters on the grain size were studied.Finite element modeling (FEM) was applied for predicting the grain size evolution in extruded ZK60 magnesium alloy and simulated results were experimentally validated. First, microstructure evolution of ZK60 magnesium alloy during deformation was studied by means of isothermal compression test. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the Deform-3D FEM code environment. FEM of deformation of ZK60 magnesium alloy have been established and validated by grain size comparison. Finally, the obtained dynamic recrystallization model was applied to hollow plate extrusion by using a portholes-equal channel angular pressing (P-ECAP) die. The finite element analysis results showed that coarse DRX grains occured in the strengthening rib of extruded plate at higher temperature and in the extruded plate at the faster speed of the ram. The test results showed that material from the front end of the extruded plate has coarse grains and other extruded has finer grains. The grain structure displays approximate equiaxed structure in transverse directions and bands of elongated grains in the longitudinal section. Prediction technique, influencing factor and influence law on grain size evolution in extrusion processing were expounded.
Key words:  magnesium alloy    dynamic recrystallization    extrusion    finite element modelling
                    发布日期:  2019-05-31
ZTFLH:  TG376.2  
基金资助: 中国博士后面上基金(2016M602238);河南省高等学校重点科研基金(17A430025);河南省科技攻关项目(172102210403;172102210399;122102210059);河南省自然科学基金(182300410208)
通讯作者:  lyapplely@126.com   
作者简介:  石磊,洛阳理工学院材料科学与工程学院,讲师。2015年3月毕业于西北工业大学,材料加工工程博士学位。2017年就职于洛阳理工学院材料科学与工程学院工作至今,主要从事金属材料精确塑性成形和挤压成形的研究。柳翊,洛阳理工学院材料科学与工程学院,讲师。2016年3月毕业于西北工业大学,材料加工工程博士学位。2017年就职于洛阳理工学院材料科学与工程学院工作至今,主要从事合金非平衡凝固和铸造及合金组织演化的研究。
引用本文:    
石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
SHI Lei, LIU Yi, SHEN Junfang, JIN Wenzhong, WANG Li, ZHANG Wei. Simulation and Experimental Study on Grain Size Evolution of P-ECAP Extrusion Magnesium Alloy Hollow Plate. Materials Reports, 2019, 33(12): 2019-2024.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18020067  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2019
1 Schikorr M, Donati L, Tomesani L, et al.Journal of Materials Processing Technology, 2008, 201, 156.
2 Mol J M C, Langkruis J V D, Wit J H W D, et al. Corrosion Science, 2005, 47, 2711.
3 Jiang W G, Wang G C, Lu S Q, et al. Journal of Materials Processing Technology, 2007, 182, 274.
4 Lin Y C, Li L T, Xia Y C. Computational Materials Science, 2011, 50, 2038.
5 Samantaray D, Mandal S, Bhaduri A K, et al. Materials Science & Engineering A, 2011, 528, 1937.
6 Wu K, Liu G Q, Hu B F, et al. Materials & Design, 2011, 32, 1872.
7 Yuan Z W, Li F G, Qiao H J, et al. Materials Science and Engineering A, 2013, 578, 260.
8 Fan X G, Yang H, Gao P F.Materials & Design, 2013, 51, 34.
9 Fan X G, Yang H, Gao P F. Journal of Materials Processing Technology, 2014, 214, 253.
10Du Q, Poole W J, Wells M A, et al. Acta Materialia, 2013, 61, 4961.
11Kang Z Q, Wang E G, Zhang L, et al. Journal of Functional Materials, 2011,42(S2):197(in Chinese).
康智强, 王恩刚, 张林, 等 功能材料, 2011,42(S2):197.
12Sun Y, Zhou C, Wan Z P, et al. Materials Review A:Review Papers, 2017, 31(7),12(in Chinese).
孙宇, 周琛, 万志鹏,等. 材料导报:综述篇, 2017, 31(7),12.
13Chen W, Guan Y P, Wang Z H. Materials Review B:Research Papers, 2016, 30(11),164(in Chinese).
陈微, 官英平, 王振华. 材料导报:研究篇, 2016, 30(11),164.
14Simar A, Nielsen K L, Meester B D, et al. Engineering Fracture Mechanics, 2010, 77, 2491.
15Clayton J D. Composites: Part B, 2009, 40, 443.
16Liu Y, Hu R, Zhang T, et al. Journal of Materials Engineering and Performance, 2016, 25, 38.
17Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Scripta Materialia, 2014, 72, 1.
18Li H, Wu C, Yang H. International Journal of Plasticity, 2013, 51, 271.
19Brown A A, Bammann D J. International Journal of Plasticity, 2012, 32-33, 17.
20Donati L, Dzwonczyk J S, Zhou J, et al. Key Engineering Materials, 2008, 367, 107.
21Yin F, Hua L, Mao H, et al. Materials & Design, 2014, 55, 560.
22Shi L, Yang H, Guo L G, et al. Transactions of Nonferrous Metals Society of China, 2014, 24, 1521.
23Shi L. Investigation on deformation mechanism of aluminum alloy during porthole ECAP spread extrusion. Ph.D.Thesis, Northwestern Polytechnical University, China, 2015(in Chinese).
石磊. 铝合金等通道转角分流大宽展挤压成形机理研究.博士学位论文,西北工业大学, 2015.
24Shi L, Li H, Jin W Z, et al. The International Journal of Advanced Manufacturing Technology, 2016, 85, 355.
25Liu F, Wang Q J, Du Z Z, et al. Journal of Functional Materials, 2014, 45(7), 7116 (in Chinese).
刘锋, 王庆娟, 杜忠泽, 等. 功能材料, 2014, 45(7), 7116.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[4] 郑嫄, 蔡中义, 程丽任, 车朝杰, 张洪杰. 铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn合金微观组织和力学性能研究[J]. 材料导报, 2019, 33(8): 1354-1360.
[5] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[6] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[7] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[8] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[9] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[10] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[11] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[12] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[13] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[14] 王春明,杨牧南,黄建辉,刘位江,梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[15] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed