Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2283-2286    https://doi.org/10.11896/cldb.18070010
  无机非金属及其复合材料 |
基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟
王月敏1, 商磊1, 闫相桥1, 李新刚2, 李垚1
1 哈尔滨工业大学复合材料与结构研究所,哈尔滨 150000;
2 中国建筑第四工程局有限公司,广州 510000
Simulation of Nanoindentation Experiments of Photonic Crystals Thin Films Using Finite Element Method
WANG Yuemin1, SHANG Lei1, YAN Xiangqiao1, LI Xingang2, LI Yao1
1 Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150000;
2 China Construction Fourth Engineering Division Co.,Ltd., Guangzhou 510000
下载:  全 文 ( PDF ) ( 3005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用垂直沉积自组装法制备了粒径为180 nm的SiO2光子晶体薄膜,利用纳米压痕技术对其进行力学测试,采用ABAQUS软件对纳米压痕过程进行了仿真研究。结果表明:制备的光子晶体薄膜粒径均一且排列有序,弹性模量为7.79 GPa,硬度为0.181 GPa。有限元仿真的位移-荷载曲线与实验测试曲线保持一致,验证了仿真模型的正确性。通过对不同压入位置的模拟,发现薄膜的硬度和弹性模量随着压痕点从球形顶点过渡到微球中间时有增加的趋势。利用纳米压痕过程的能量分布,分析了压头下能量分布机理及不同压入位置力学参数不同的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王月敏
商磊
闫相桥
李新刚
李垚
关键词:  光子晶体薄膜  纳米压痕  有限元模拟  能量法  压入位置    
Abstract: The photonic crystals thin films have been prepared for the investigation of their deformation behaviors by nanoindentation tests at the sub-microscale. The process of nanoindentation test was simulated by ABAQUS software. The results indicate that the prepared photonic crystals thin films is highly ordered and arranged closely,and the measured elastic modulus is 7.79 GPa and the hardness is 0.181 GPa. Through the simulation of the different indenting positions, it is concluded that both the hardness and the elastic modulus increase slightly with the transition of the indentation point from the spherical surface crown to the middle position of the two microspheres, but the average error can be ignored and points out the reasons of the errors via the energy distribution. The simulation curve is basically consistent with the experimental load-displacement curve so that it can effectively simulate the mechanical test of the photonic crystals material, thus laying the foundation for the further research.
Key words:  photonic crystals thin films    nanoindentation    finite element method    energy method    indentation positions
                    发布日期:  2019-06-20
ZTFLH:  O341  
基金资助: 国家自然科学基金(51572058;91216123)
通讯作者:  liyao@hit.edu.cn   
作者简介:  王月敏,哈尔滨工业大学航天学院在读博士研究生。研究工作主要围绕国家重点发展的功能复合材料,开展关于基于纳米压痕技术的微纳米材料力学的基础理论和应用研究。李垚,哈尔滨工业大学教授,博士研究生导师,长江学者,国家“万人计划”入选者。2000年博士毕业于哈尔滨工业大学留校至今。其团队主要研究方向包括: 长期从事功能复合材料的研究,结合国际学术前沿及国家和国防重大需求,将有序微结构的概念和设计引入到功能复合材料的研究中。
引用本文:    
王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
WANG Yuemin, SHANG Lei, YAN Xiangqiao, LI Xingang, LI Yao. Simulation of Nanoindentation Experiments of Photonic Crystals Thin Films Using Finite Element Method. Materials Reports, 2019, 33(14): 2283-2286.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070010  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2283
1 Moon J H, Yang S. Chemical Reviews, 2009, 110(1),547.
2 Gonzalez-Urbina L, Baert K, Kolaric B, et al. Chemical Reviews, 2011, 112(4),2268.
3 Lavan D A, McGuire T, Langer R. Nature Biotechnology, 2003, 21(10),1184.
4 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials, 2012, 11(1),19.
5 Ni P G. Acta Physica Sinica, 2010, 59(1), 340(in Chinese).
倪培根. 物理学报, 2010, 59(1),340.
6 Li Y, Kong X J, Guo W C, et al. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3),469(in Chinese).
李言,孔祥健,郭伟超,等. 机械科学与技术, 2017, 36(3),469.
7 Liu M, Xu W, Bai J, et al. Nanotechnology, 2016, 27(40),405703.
8 Li Z, Yang L, Li Y, et al. Materials & Design, 2013, 45,52.
9 Gallego-Gómez F, Blanco A, López C. Advanced Materials, 2015, 27(17),2686.
10 Chen X, Wang L, Wen Y, et al. Journal of Materials Chemistry, 2008, 18(19),2262.
11 Li T L. Research on mechanical behavior of the photonic crystal thermal control coating. Master's Thesis, Harbin Institute of Technology, China, 2012(in Chinese).
李天龙. 光子晶体热控涂层的力学行为研究.硕士学位论文,哈尔滨工业大学,2012.
12 Pan L, Wang Y, Xu H, et al. Chinese Journal of Chemical Physics, 2014, 27(5),563.
13 Zhou Z, Zhao X S. Langmuir, 2004, 20(4),1524.
14 Li Y, Ma B, Zhao J, et al. Journal of Alloys and Compounds, 2011, 509(2),290.
15 Saha R, Nix W D. Acta Materialia, 2002, 50(1),23.
16 Oliver W C, Pharr G M. Journal of Materials Research, 2004, 19(1),3.
17 Zhuang Z, Zhang F, Cen S. Nonlinear finite element analysis and example of ABAQUS,The Science Publishing Company, China, 2011(in Chinese).
庄茁, 张帆,岑松. ABAQUS非线性有限元分析与实例,科学出版社,2005.
18 Boccaccio A, Papi M, De Spirito M, et al. Applied Physics Letters, 2013, 102(13),133704.
19 Chen S H, Liu L, Wang T C. International Journal of Solids and Structures, 2007, 44(13), 4492.
20 Lee D, Jia S, Banerjee S, et al. Physical Review Letters, 2007, 98(2),026103.
21 Cao, Y P, Qian X Q, Lu J, et al. Journal of Materials Research, 2005,20(5),1194.
22 Jha K K, Suksawang N, Lahiri D, et al. Materials and Structures, 2015,48(9), 2915.
[1] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[2] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[3] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[4] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[5] 余志远, 王昌, 汶斌斌, 艾迪, 刘汉源, 于振涛. AZ31镁合金管材游动芯头拉拔有限元模拟[J]. 材料导报, 2018, 32(16): 2778-2782.
[6] 王月敏, 闫相桥, 李垚, 王滨生. 基于纳米压痕技术的本构关系反演分析进展*[J]. 《材料导报》期刊社, 2017, 31(17): 1-5.
[7] 黄哲远, 王文先, 闫志峰, 张婷婷. 定向凝固多晶硅在微纳尺度下的力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 11-15.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed