Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.017.001
  材料综述 |
基于纳米压痕技术的本构关系反演分析进展*
王月敏1, 闫相桥1, 李垚1, 王滨生2
1 哈尔滨工业大学复合材料与结构研究所,哈尔滨 150080;
2 黑龙江省质量监督检测研究院,哈尔滨 150001
A Review of Reverse Analysis for Material Constitutive Relation Based on Nanoindentation Technique
WANG Yuemin1, YAN Xiangqiao1, LI Yao1, WANG Binsheng2
1 Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080;
2 The Academy of Quality Supervision and Inspection in Heilongjiang Province, Harbin 150001
下载:  全 文 ( PDF ) ( 1399KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了应力应变反演分析的几种分析方法,包括Dao-Suresh法、极限分析法以及Zhao-Chen法。针对各种方法的力学理论进行论述,并给出每种方法的优缺点和适用范围。介绍了本构关系反演分析中的唯一性问题,尤其侧重于介绍Liu和Chen的研究工作。对本构关系反演分析的不足进行了阐述,并对发展趋势做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王月敏
闫相桥
李垚
王滨生
关键词:  纳米压痕测试  本构关系  反演分析  唯一性    
Abstract: Several stress-strain reverse analysis methods are outlined in this article, including Dao-Suresh method, limit analysis-based approach and Zhao-Chen method, with emphases on their mechanical theories. At the same time, the advantages and disadvantages of the methods and the applying scopes are described. Uniqueness for reverse analysis is introduced, especially focusing on the works of Liu and Chen. Moreover, the possible research prospects are overviewed.
Key words:  nanoindentation    constitutive relation    reverse analysis    uniqueness
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TB301  
基金资助: 国家自然科学基金(51572058;91216123)
通讯作者:  李垚:通讯作者,男,1973年生,博士,教授,博士研究生导师,研究方向为功能复合材料设计以及评价一体化等 E-mail:liyao@hit.edu.cn   
作者简介:  王月敏:男,1989年生,博士研究生,研究方向为微纳米薄膜材料的力学测试技术 E-mail:yuemin_wanghit@yahoo.com
引用本文:    
王月敏, 闫相桥, 李垚, 王滨生. 基于纳米压痕技术的本构关系反演分析进展*[J]. 《材料导报》期刊社, 2017, 31(17): 1-5.
WANG Yuemin, YAN Xiangqiao, LI Yao, WANG Binsheng. A Review of Reverse Analysis for Material Constitutive Relation Based on Nanoindentation Technique. Materials Reports, 2017, 31(17): 1-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.001  或          http://www.mater-rep.com/CN/Y2017/V31/I17/1
1 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J Mater Res,1992,7(6):1564.
2 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J Mater Res,2004,19(1):3.
3 Schuh C A. Nanoindentation studies of materials [J]. Mater Today,2006,9(5):32.
4 Dong M L, Jin G, Wang H D, et al. The research status of nanoindentaion methods for measuring residual stresses [J]. Mater Rev:Rev,2014,28(3):107(in Chinese).
董美伶, 金国, 王海斗, 等. 纳米压痕法测量残余应力的研究现状[J]. 材料导报:综述篇,2014,28(3):107.
5 Yu C, Yang R, Feng Y, et al. Relationships between the work recovery ratio of indentation and plastic parameters for instrumented spherical indentation [J]. MRS Commun,2015,5(1):89.
6 Kim M, Marimuthu K P, Lee J H, et al. Spherical indentation method to evaluate material properties of high-strength materials[J]. Int J Mech Sci,2016,106: 117.
7 Ma Z S, Zhou Y C, Long S G, et al. On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects [J]. Int J Plast, 2012,34:1.
8 张泰华. 微/纳米力学测试技术及其应用[M]. 北京:机械工业出版社, 2005.
9 Pöhl F, Huth S, Theisen W. Detection of the indentation-size-effect (ISE) and surface hardening by analysis of the loading curvature C[J]. Int J Solids Struct,2016,84:160.
10 Gao X, Ma Z, Jiang W, et al. Stress-strain relationships of LixSn alloys for lithium ion batteries [J]. J Power Sources,2016,311:21.
11 Chung P C, Glynos E, Green P F. The elastic mechanical response of supported thin polymer films[J]. Langmuir,2014,30(50):15200.
12 Fischer-Cripps A C. Critical review of analysis and interpretation of nanoindentation test data [J]. Surf Coat Technol,2006,200(14):4153.
13 Le M Q. Material characterization by instrumented spherical indentation [J]. Mech Mater,2012,46:42.
14 Tabor D. Indentation hardness: Fifty years on a personal view [J]. Phil Mag A,1996,74(5):1207.
15 Robach J S, Kramer D E, Gerberich W W. Determining yield stress via measurement of nanoindentation plastic zone radii[C]//MRS Online Proceeding Library Archive. Cambridge: Cambridge University Press,1998:133.
16 Bell T J, Field J S, Swain M V. Elastic-plastic characterization of thin films with spherical indentation [J]. Thin Solid Films,1992,220(1-2):289.
17 Chaudhri M M. Subsurface plastic strain distribution around spherical indentations in metals [J]. Phil Mag A, 1996,74(5):1213.
18 Dao M, Chollacoop N, Van Vliet K J, et al. Computational mode-ling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Mater,2001,49(19):3899.
19 Cheng Y T, Cheng C M. Scaling approach to conical indentation in elastic-plastic solids with work hardening [J]. J Appl Phys,1998,84(3):1284.
20 Wang L, Rokhlin S I. Universal scaling functions for continuous stiffness nanoindentation with sharp indenters [J]. Int J Solids Struct,2005,42(13):3807.
21 Chollacoop N, Dao M, Suresh S. Depth-sensing instrumented indentation with dual sharp indenters [J]. Acta Mater,2003,51(13):3713.
22 Bucaille J L, Stauss S, Felder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters[J]. Acta Mater,2003, 51(6):1663.
23 Antunes J M, Fernandes J V, Menezes L F, et al. A new approach for reverse analyses in depth-sensing indentation using numerical simulation [J]. Acta Mater, 2007,55(1):69.
24 Pham T H, Kim J J, Kim S E. Estimating constitutive equation of structural steel using indentation[J]. Int J Mech Sci,2015,90:151.
25 Kang S K, Kim Y C, Kim K H, et al. Constitutive equations optimized for determining strengths of metallic alloys [J]. Mech Mater,2014,73:51.
26 Pöhl F, Huth S, Theisen W. Indentation of self-similar indenters: An FEM-assisted energy-based analysis [J]. J Mech Phys Solids,2014, 66:32.
27 Hyun H C, Kim M, Lee J H, et al. A dual conical indentation technique based on FEA solutions for property evaluation [J]. Mech Mater,2011,43(6):313.
28 Lee J H, Kim T, Lee H. A study on robust indentation techniques to evaluate elastic-plastic properties of metals [J]. Int J Solids Struct,2010,47(5):647.
29 Le M Q. Material characterization by dual sharp indenters [J]. Int J Solids Struct,2009,46(16):2988.
30 Le M Q. Improved reverse analysis for material characterization with dual sharp indenters [J]. Int J Solids Struct,2011,48(10):1600.
31 Yu C, Feng Y, Yang R, et al. An integrated method to determine elastic-plastic parameters by instrumented spherical indentation [J]. J Mater Res,2014,29(9): 1095.
32 Ogasawara N, Chiba N, Chen X. Representative strain of indentation analysis [J]. J Mater Res,2005,20(8): 2225.
33 Ogasawara N, Chiba N, Chen X. Limit analysis-based approach to determine the material plastic properties with conical indentation [J]. J Mater Res,2006,21(4): 947.
34 Ogasawara N, Chiba N, Chen X. A simple framework of spherical indentation for measuring elastoplastic properties [J]. Mech Mater,2009,41(9):1025.
35 Sneddon I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile [J]. Int J Eng Sci,1965,3(1):47.
36 Hay J C, Bolshakov A, Pharr G M. A critical examination of the fundamental relations used in the analysis of nanoindentation data [J]. J Mater Res,1999, 14(6):2296.
37 Qu S, Huang Y, Nix W D, et al. Indenter tip radius effect on the Nix-Gao relation in micro-and nanoindentation hardness experiments [J]. J Mater Res,2004,19(11):3423.
38 Zhao M, Chen X, Xiang Y, et al. Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation [J]. Acta Mater, 2007,55(18):6260.
39 Zhao M, Xiang Y, Xu J, et al. Determining mechanical properties of thin films from the loading curve of nanoindentation testing [J]. Thin Solid Films,2008, 516(21):7571.
40 Cheng Y T, Cheng C M. Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters? [J]. J Mater Res, 1999,14(9):3493.
41 Liu L, Ogasawara N, Chiba N, et al. Can indentation technique measure unique elastoplastic properties? [J]. J Mater Res, 2009,24(3):784.
[1] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[2] 黄哲远, 王文先, 闫志峰, 张婷婷. 定向凝固多晶硅在微纳尺度下的力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 11-15.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed