Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23080024-9    https://doi.org/10.11896/cldb.23080024
  无机非金属及其复合材料 |
复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究
陈宇良1,2,3,*, 王双翼1, 李洪1, 李培泽1
1 广西科技大学土木建筑工程学院,广西 柳州 545006
2 广西科技大学广西装配结构安全防控工程研究中心,广西 柳州 545006
3 广西科技大学广西高校防灾减灾与预应力技术重点实验室,广西 柳州 545006
Study on Damage Evolution and Stress-Strain Constitutive Relationship of Glass Fiber Recycled Concrete Under Complex Stress State
CHEN Yuliang1,2,3,*, WANG Shuangyi1, LI Hong1, LI Peize1
1 School of Civil Engineering and Architecture, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
2 Guangxi Engineering Research Center for Safety Prevention and Control of Assembly Structure, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
3 Key Laboratory of Disaster Prevention & Mitigation and Prestress Technology of Guangxi Colleges and Universities, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
下载:  全 文 ( PDF ) ( 7371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作旨在通过常规三轴受压试验探究玻璃纤维再生混凝土(GFRAC)在三轴受压力学方面的性能,为此以玻璃纤维体积掺量V、再生粗骨料取代率γ和侧向围压σw为参数,共设计了168个100 mm(直径)×200 mm(高度)的玻璃纤维再生混凝土圆柱体试件并进行试验。通过试验获得了GFRAC的破坏特征并分析了不同参数对峰值应力、峰值应变及弹性模量的影响规律。由试验结果分析可得,随着侧向围压的增大,GFRAC的破坏形态由纵向劈裂破坏逐步转为斜向剪切破坏,网格状裂缝逐渐增多并布满试件,在试件的中部或端部出现“腰鼓”变形现象;通过施加侧向围压可以有效地增加GFRAC的峰值应力、应变和弹性模量;玻璃纤维提高了试件的峰值应力,且提高幅度在20%以内;增加再生粗骨料的取代率会导致峰值应力和弹性模量减小,最大下降幅度分别约为19.17%和34.91%,而峰值应变会增大,最大增幅可达76.77%;侧向围压和玻璃纤维均有效延缓了试件的损伤过程;最后,基于试验数据建立了玻璃纤维再生混凝土在三轴受压状态下的应力-应变本构关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇良
王双翼
李洪
李培泽
关键词:  三向复杂应力  玻璃纤维再生混凝土  力学性能  应力-应变本构关系  损伤分析    
Abstract: To explore the performance of glass fiber recycled concrete ( GFRAC ) in triaxial compression mechanics through conventional triaxial compression tests, here 168 glass fiber recycled concrete cylinder specimens of 100mm ( diameter ) × 200mm ( height ) were designed with glass fiber volume content V, recycled coarse aggregate replacement rateγ and lateral confining pressure σw as variable parameters. The failure characteristics of GFRAC specimens were obtained by experiments, and the influence of different parameters on peak stress, peak strain and elastic modulus was analyzed. The results showed that with the increase of lateral confining pressure, the failure mode of GFRAC gradually changed from longitudinal splitting failure to oblique shear failure, the grid cracks gradually increased and covered specimens, and the ‘waist drum’ deformation occured at the middle or end of the specimen. The peak stress, strain and elastic modulus of GFRAC could be effectively increased by applying lateral confining pressure. The glass fiber could enhance the peak stress of the specimen and the increased range was less than 20%. Increasing the replacement rate of recycled coarse aggregate resulted in the decrease of peak stress and elastic modulus, with the maximum decrease of 19.17% and 34.91%, respectively, while the peak strain increased with the maximum increase of 76.77%. Both lateral confining pressure and glass fiber should effectively delay the damage process of the specimen. Finally, based on the experimental data, the stress-strain constitutive relationship of glass fiber recycled concrete under triaxial compression was established.
Key words:  three-dimensional complex stress    glass fiber recycled concrete    mechanical properties    constitutive relation    damage analysis
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(52368013;51908141); 广西重点研发计划项目(桂科AB23075196); 广西高校中青年教师科研基础能力提升项目(2022KY0348)
通讯作者:  * 陈宇良,广西科技大学土木建筑工程学院副教授,硕士研究生导师。广西壮族自治区装配结构安全防控工程研究中心主任、广西高校防灾减灾与预应力技术重点实验室主任、柳州市绿色先进土木工程材料应用重点实验室主任。2010年广西工学院土木工程专业本科毕业,2013年广西大学结构工程专业硕士毕业,2018年广西大学和Syracuse University联合培养结构工程专业博士毕业后到广西科技大学工作至今。目前主要从事可持续绿色建筑材料的研制及应用研究。在国内外高水平期刊发表学术论文100余篇,其中SCI、EI收录63篇。 ylchen@gxust.edu.cn   
引用本文:    
陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
CHEN Yuliang, WANG Shuangyi, LI Hong, LI Peize. Study on Damage Evolution and Stress-Strain Constitutive Relationship of Glass Fiber Recycled Concrete Under Complex Stress State. Materials Reports, 2024, 38(24): 23080024-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080024  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23080024
1 Zhu C, Zhao W T, Yu W H, et al. Acta Materiae Compositae Sinica. 2023(2), 1 (in Chinese).
朱超, 赵文韬, 余伟航, 等. 复合材料学报, 2023(2), 1.
2 Gao W C, Zhang H, Geng Y, et al. Journal of Building Materials, 2022, 25(11), 1121 (in Chinese).
高文昌, 张欢, 耿悦, 等. 建筑材料学报, 2022, 25(11), 1121.
3 Wang C H, Xiao J Z. China Civil Engineering Journal, 2022, 55(5), 37 (in Chinese).
王春晖, 肖建庄. 土木工程学报, 2022, 55(5), 37.
4 Tejas S, Dinakar P. Construction and Building Materials. 2023, 387, 131620.
5 Chen Y L, Liu J, Wu H Q, et al. Acta Materiae Compositae Sinica, 2021, 38(11), 3962 (in Chinese).
陈宇良, 刘杰, 吴辉琴, 等. 复合材料学报, 2021, 38(11), 3962.
6 Sun D S, Li Z Y, Liu K W, et al. Materials Reports, 2021, 35(11), 11027 (in Chinese).
孙道胜, 李泽英, 刘开伟, 等. 材料导报, 2021, 35(11), 11027.
7 Shi C J, Li Y K, Zhang J K, et al. Journal of Cleaner Production, 2016, 112, 466
8 Wang J G, Zhang J X, Cao D D, et al. Construction and Building Materials, 2020, 234, 117366
9 Zhang X G, Zhou G Q, Fan Y H, et al. Acta Materiae Compositae Sinica, 2023, 40(1), 369 (in Chinese).
张向冈, 周高强, 范玉辉, 等. 复合材料学报, 2023, 40(1): 369.
10 Chen Y L, Li H, Ye P H, et al. Acta Materiae Compositae Sinica, 2022, 39(11), 5574 (in Chinese).
陈宇良, 李浩, 叶培欢, 等. 复合材料学报, 2022, 39(11), 5574.
11 Chen Y L, Jiang R, Chen Z P, et al. Journal of Building Materials, 2022, 25(9), 984 (in Chinese).
陈宇良, 姜锐, 陈宗平, 等. 建筑材料学报, 2022, 25(9), 984.
12 Feng J J, Yin G S, Liu Z, et al. Acta Materiae Compositae Sinica, 2022, 39(11), 5386 (in Chinese).
冯俊杰, 尹冠生, 刘柱, 等. 复合材料学报, 2022, 39(11), 5386.
13 Chen Y L, Ji Y P, Chen Z P, et al. Acta Materiae Compositae Sinica, 2022, 39(8), 4005 (in Chinese).
陈宇良, 吉云鹏, 陈宗平, 等. 复合材料学报, 2022, 39(8), 4005.
14 Ding Y H, Guo S Q, Zhang X G, et al. Acta Materiae Compositae Sinica, 2022, 39(3), 1228 (in Chinese).
丁亚红, 郭书奇, 张向冈, 等. 复合材料学报, 2022, 39(3), 1228.
15 Chen Y L, Li p Z, Ye P H, et al. Construction and Building Materials, 2022, 350, 128825.
16 Wisal A, Lim C W, Journal of Cleaner Production, 2021, 279, 123832.
17 Wang C Q, Wu H X, Li C X, et al. Construction and Building Materials, 2022, 319, 126191.
18 Chen Y L, Wang Q, Liang X, et al. Acta Materiae Compositae Sinica, 2023, 40(8), 4745(in Chinese).
陈宇良, 王琦, 梁鑫, 等. 复合材料学报, 2023, 40(8), 4745.
19 Chen Y L, He Q, Liang X, et al. Cleaner Materials, 2022, 6, 100164.
20 Wu C H, Chi J H, Wang W C. et al. Joumal of Thermal Analysis and Calorimetry, 2023, 148, 4655.
21 Yang W R, Tang Z Y, Wu W W, et al. Construction and Building Materials, 2022, 328, 127063.
22 Guo Z H, Principles of Reinforced Concrete, 3th ed, Tsinghua University Press, China, 2013, pp.74 (in Chinese).
过镇海, 钢筋混凝土原理, 第3版, 清华大学出版社, 2013, pp.74.
23 Chen Z P, Zhou C H, Jiang X S. China Civil Engineering Journal, 2019, 52(7), 69 (in Chinese).
陈宗平, 周春恒, 蒋香山. 土木工程学报, 2019, 52(7), 69.
24 Wu Q X, Xu Z K, Yuan H H, et al. Journal of Building Structures, 2023, 44(12), 183(in Chinese).
吴庆雄, 许志坤, 袁辉辉等. 建筑结构学报, 2023, 44(12), 183.
25 Standardization Administration of the People’s Republic of China. Pebble and crushed stone for construction, China Standards Press, China, 2011 (in Chinese).
中国国家标准化管理委员会. 建设用卵石、碎石, 中国标准出版社, 2011.
26 Standardization Administration of the People’s Republic of China. Common portland cement, China Standards Press, China, 2007 (in Chinese).
中国国家标准化管理委员会. 通用硅酸盐水泥, 中国标准出版社, 2007.
27 Chen Z P, chen Y L, xu j J, et al. China Civil Engineering Journal, 2015, 48(12), 23 (in Chinese).
陈宗平, 陈宇良, 徐金俊等. 土木工程学报, 2015, 48(12), 23.
28 Chen Y L, chen Z P, Xu J J, et al. Construction and Building Materials, 2019, 229, 116935.
29 International Federation of Structural Concrete. General Assembly of FIB, CEB-FIP Model code, Germany, 2010.
30 Housing and urban-rural development of the People’s Republic of China. Code for design of concrete structures, China Building Industry Press, China, 2010 (in Chinese).
中华人民共和国住房和城乡建设部(标准制定单位). 混凝土结构设计规范, 中国建筑工业出版社, 2010.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed