Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22120175-7    https://doi.org/10.11896/cldb.22120175
  金属与金属基复合材料 |
原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能
白云官1,2, 吉小超3, 李海庆1,*, 魏敏3, 于鹤龙2,*, 张伟3
1 广东工业大学机电工程学院,广州 510006
2 中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 佛山科学技术学院机电工程与自动化学院,广东 佛山 062450
Microstructure and Mechanical Properties of TiC/Ti Composites Fabricated from In-situ Synthesized Ti Alloy@CNTs Powder by SPS
BAI Yunguan1,2, JI Xiaochao3, LI Haiqing1,*, WEI Min3, YU Helong2,*, ZHANG Wei3
1 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces of PLA, Beijing 100072, China
3 School of Mechatronic Engineering and Automation, Foshan University, Foshan 062450, Guangdong, China
下载:  全 文 ( PDF ) ( 14822KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Fe/Ni为催化剂,利用等离子体增强化学气相沉积(PECVD)方法在球形钛合金微米粉体表面原位合成了碳纳米管(CNTs)包覆的钛合金(钛合金@CNTs)复合粉末。以钛合金@CNTs粉体为原料,利用放电等离子体烧结(SPS)工艺制备了原位TiC与CNTs增强Ti基复合材料,采用扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱仪、X射线衍射仪、电子探针、纳米压痕等对复合粉体及烧结复合材料的微观结构、物相成分及力学性能进行了表征分析。在此基础上探讨了催化剂前驱体含量、生长时间等对低温原位CNTs生长机理的影响,以及复合粉体烧结反应对复合材料组织结构的形成以及CNTs与Ti基体反应原位形成TiC的机理。结果表明,原位形成的TiC主要受CNTs的结晶度与SPS温度所影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白云官
吉小超
李海庆
魏敏
于鹤龙
张伟
关键词:  碳纳米管  原位合成  钛基复合材料  微结构  力学性能    
Abstract: Carbon nanotubes (CNTs) coated titanium alloy (Ti alloy@CNTs) composite powders were synthesized by in-situ plasma enhanced chemical vapor deposition (PECVD) via Fe/Ni catalyst. The produced composite powders were consolidated via spark plasma sintering (SPS) to fabricate the TiC and CNTs reinforced Ti matrix composites. The microstructure and composition of titanium alloy @ CNTs powder were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The microstructure, phase composition and mechanical properties of the composites were characterized by SEM, XRD, Raman spectroscopy, nano indentation. On this basis, the factors influencing the structure of carbon nanotubes in-situ synthesized by PECVD, including the catalyst concentration and reaction time, were investigated. In addition, the mechanism of the formation of the microstructure of the composite during sintering were discussed and the mechanism of in-situ TiC formation by the reaction of CNTs with Ti matrix. The result indicate that in-situ TiC formation is mainly affected by the crystallinity of CNTs and SPS temperature.
Key words:  carbon nanotubes    in-situ synthesized    titanium matrix composite    microstructure    mechanical property
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TG14  
基金资助: 国家自然科学基金(52075544)
通讯作者:  * 李海庆,博士,百人计划特聘教授,博士研究生导师。长期从事特殊环境新型涂层及其在国防装备的应用研究。主持了国防重大科技工程、航天重大工艺、航天创新基金、中央军委领域基金项目10余项。发表学术论文50篇,获授权国家发明专利 28项。hqli@gdut.edu.cn
于鹤龙,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室副主任、副研究员。2016年毕业于中国人民解放军装甲兵工程学院,获得工学博士学位。主要从事装备再制造、表面工程与军用新材料领域的研究工作。发表学术论文100余篇,获授权国家发明专利 24项。helong.yu@163.com   
作者简介:  白云官,广东工业大学机电工程学院硕士研究生,在于鹤龙老师和李海庆老师的指导下进行研究。主要从事碳纳米管增强金属基复合材料的研究。
引用本文:    
白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
BAI Yunguan, JI Xiaochao, LI Haiqing, WEI Min, YU Helong, ZHANG Wei. Microstructure and Mechanical Properties of TiC/Ti Composites Fabricated from In-situ Synthesized Ti Alloy@CNTs Powder by SPS. Materials Reports, 2024, 38(9): 22120175-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120175  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22120175
1 Han F Y, Qiu P K, Sun X L, et al. Aeronautical Manufacturing Techno-logy, 2016, 59(15), 62 (in Chinese).
韩远飞, 邱培坤, 孙相龙, 等. 航空制造技术, 2016, 59(15), 62.
2 Munir K S, Zheng Y, Zhang D, et al. Materials Science & Engineering A, 2017, 688, 505.
3 Kondoh K, Threrujirapapong T, Umeda J, et al. Composites Science and Technology, 2012, 72(11), 1291.
4 Chen B, Shen J, Ye X, et al. Acta Materialia, 2017, 140, 317.
5 Duan B, Zhou Y, Wang D, et al. Journal of Alloys and Compounds, 2019, 771, 498.
6 Lourie O, Cox D, Wagner H J P R L. Physical Review Letters, 1998, 81 (8), 1638.
7 Thostenson E T, Ren Z, Chou T W J C S, et al. Composites Science and Technology, 2001, 61 (13), 1899.
8 Sun X, Han Y, Cao S, et al. Journal of Materials Science & Technology, 2017, 33(10), 1165.
9 Sinnott S B, Andrews R, Qian D, et al. Chemical Physics Letters, 1999, 315(1-2), 25.
10 Liu Y, Li S, Misra R, et al. Scripta Materialia, 2020, 183, 6.
11 Tripathi N, Mishra P, Harsh H, et al. Applied Nanoscience, 2015, 5(1), 19.
12 Liu Y. Preparation and properties of in-situ synthesized CNTs reinforced Zn matrix composites. Master's Thesis, Xiangtan University, China, 2019 (in Chinese).
刘越. 原位合成CNTs增强Zn基复合材料的制备与性能. 硕士学位论文,湘潭大学,2019.
13 Ji X, Zhang W, Li X, et al. Diamond and Related Materials, 2017, 77, 16.
14 Kong J, Cassell A M, Dai H J. Chemical Physics Letters, 1998, 292 (4-6), 567.
15 Lohse B H, Calka A, Wexler D. Journal of Applied Physics, 2005, 97 (11), 114912.
16 Datsyuk V, Kalyva M, Papagelis K, et al. Carbon, 2008, 46 (6), 833.
17 Rosca I D, Watari F, Uo M, et al. Carbon, 2005, 43 (15), 3124.
18 Munir K S, Li Y, Liang D, et al. Materials & Design, 2015, 88, 138.
19 Lü W J, Zhang D, Zhang X N, et al. Transactions of Nonferrous Metals Society of China, 2001,11(1),67.
20 Lyu W J, Zhang X N, Zhang D, et al. Acta Metallurgica Sinica, 1999(5),536 (in Chinese).
吕维洁,张小农,张荻,等. 金属学报, 1999(5),536.
21 Zhu J, Wei S, Ryu J, et al. The Royal Society of Chemistry, 2010, 20 (23), 4937.
22 Li S, Sun B, Imai H, et al. Composites Part A: Applied Science and Ma-nufacturing, 2013, 48, 57.
23 Kondoh K, Threrujirapapong T, Umeda J, et al. Composites Science and Technology, 2012, 72(11), 1291.
24 Guyon J, Hazotte A, Monchoux J P, et al. Intermetallics, 2013, 34, 94.
25 Wei S, Zhang Z H, Wang F C, et al. Materials Science & Engineering A, 2013, 560, 249.
26 Castanho J M, Vieira M T. MRS Online Proceedings Library, 2002, 750, 1.
27 Yu H L, Zhang W, Wang H M, et al. Journal of Alloys and Compounds, 2017, 701, 244.
[1] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed