Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22050144-7    https://doi.org/10.11896/cldb.22050144
  高分子与聚合物基复合材料 |
金属橡胶-聚氨酯复合材料减振性能研究
郑孝源1, 任志英1,*, 吴乙万1, 白鸿柏1, 黄健萌1, 谭桂斌2
1 福州大学机械工程及自动化学院,金属橡胶与振动噪声研究所,福州 350116
2 广东工业大学机电工程学院,广州 510006
Research on Vibration Damping Properties of Entangled Metallic Wire Materials- Polyurethane Composites
ZHENG Xiaoyuan1, REN Zhiying1,*, WU Yiwang1, BAI Hongbai1, HUANG Jianmeng1, TAN Guibin2
1 Metal Rubber Engineering Research Center, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
2 School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 21544KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对单一减振材料无法兼具高阻尼与高刚度的弊端,本工作提出了一种新的复合材料,即将三维空间网状结构的金属橡胶(EMWM)作为基体,聚氨酯 (PU) 作为增强体,并采用真空渗流的方式制备了具有高阻尼与高刚度的金属橡胶-聚氨酯 (EMWM-PU) 复合材料。通过EMWM与EMWM-PU复合材料的准静态压缩试验,发现界面摩擦的引入使得EMWM-PU复合材料的耗能与刚度特性得到显著提升。此外搭建了复合材料管路减振测试平台,以平均振动加速度级和插入损失作为评价指标,研究了EMWM密度、激振量级、安装时的预紧间距对管路减振性能的影响。结果表明,EMWM-PU复合材料在5~1 000 Hz频段范围内均具有优异的减振效果,且复合材料中基体材料EMEM的密度越小、安装时的预紧间距越大,减振效果越好。本研究有效拓宽了复合材料的应用范围,也为金属橡胶复合材料的设计和应用提供了有效的指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑孝源
任志英
吴乙万
白鸿柏
黄健萌
谭桂斌
关键词:  金属橡胶  聚氨酯  复合材料  力学性能  管路减振    
Abstract: In the present work, a novel entangled metallic wire material-polyurethane(EMWM-PU) composite was developed through the vacuum infiltration method with the entangled metallic wire material (EMWM) as the matrix and polyurethane as the reinforcement. By comparing the quasistatic compression properties of EMWM and EMWM-PU composites, it was found that the composites exhibited excellent energy consumption and stiffness properties due to the interfacial friction. The pipeline test platform was built, and the vibration acceleration level and insertion loss were used as evaluation indexes. In addition, the effects of EMWM density, excitation levels and preload on the vibration damping performance of the pipeline were studied in detail. The results showed that the EMWM-PU composites have excellent vibration reduction effect in the frequency band of 5—1 000 Hz, and the smaller of the matrix density and the larger the preload during installation, the better the vibration reduction effect. This study provides effective guidance for the design and application of EMWM composites.
Key words:  entangled metallic wire material    polyurethane    composite    mechanical property    pipeline damping
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  O328  
  TB535+.1  
基金资助: 国家自然科学基金(U2330202;52175162;51805086);福建省关键技术创新及产业化项目(2023XQ005);江门市揭榜挂帅科技计划项目(2023780200030009506)
通讯作者:  *任志英,福州大学机械工程及自动化学院教授、博士研究生导师。2006年福州大学工作至今。目前主要从事装备减振降噪与金属橡胶材料研制方面的研究工作。发表论文60余篇,包括Composite Structures、Friction、AICHE J、Mechanical Systems and Signal Processing、Defence Technology 等。   
作者简介:  郑孝源,2021年6月于获得福州大学硕士学位。现为福州大学机械工程及自动化学院博士研究生,在任志英教授的指导下进行研究。目前主要研究领域为金属橡胶材料。
引用本文:    
郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
ZHENG Xiaoyuan, REN Zhiying, WU Yiwang, BAI Hongbai, HUANG Jianmeng, TAN Guibin. Research on Vibration Damping Properties of Entangled Metallic Wire Materials- Polyurethane Composites. Materials Reports, 2024, 38(6): 22050144-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050144  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22050144
1 Cao X F, Yu D L, Liu J W, et al. Journal of Vibration and Shock, 2016, 35(19), 20 (in Chinese).
曹晓丰, 郁殿龙, 刘江伟, 等. 振动与冲击, 2016, 35(19), 20.
2 Miao A N. Mechanical properties and vibration reduction research of multi-dimensional vibration and mitigation device for large-scale pipeline structures. Master's Thesis, Southeast University, China, 2018 (in Chinese).
苗安男. 大型管道结构多维隔减振装置力学性能及其减振研究. 硕士学位论文, 东南大学, 2018.
3 Yu M S, Lin L. Journal of Ship Mechanics, 2017, 21(2), 244 (in Chinese).
俞孟萨, 林立. 船舶力学, 2017, 21(2), 244.
4 Chiba T, Kobayashi H. Journal of Pressure Vessel Technology Transactions of the Asme, 1990, 112(1), 34.
5 Fang J, Lyons G J. Journal of Sound and Vibration, 1996, 193(4), 891.
6 Bi K M, Hao H. Engineering Structures, 2016, 123(15), 1.
7 Yin Z Y, Wu J H, Sun L H, et al. Journal of Ship Mechanics, 2018, 22(8), 1039 (in Chinese).
尹志勇, 吴江海, 孙凌寒, 等. 船舶力学, 2018, 22(8), 1039.
8 Lin F, Zhou Q D, Lyu X J. Ship Science and Technology, 2017, 39(2), 70 (in Chinese).
刘帆, 周其斗, 吕晓军. 舰船科学技术, 2017, 39(2), 70.
9 Li H Y. Study on the viscoelastic materials and dynamic properties of partial constrained layer damping structure. Master's Thesis, Qingdao University of Technology, China, 2018 (in Chinese).
李华阳. 粘弹性阻尼材料及局部约束阻尼结构动态力学性能研究. 硕士学位论文, 青岛理工大学, 2018.
10 Zhao C. Study on design and mechanical properties of metal rubber pipeline shock absorber. Master's Thesis, Harbin Engineering University, China, 2018 (in Chinese).
赵冲. 金属橡胶管路减振器设计与力学性能研究. 硕士学位论文, 哈尔滨工程大学, 2018.
11 Yang Y, Ren Z, Zhao S Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 157.
12 Bezborodov S A, Ulanov A M. Procedia Engineering, 2017, 176(2), 169.
13 Sun J, Wang H, Peng H X, et al. Journal of Materials Science and Engineering, 2019, 37(4), 664 (in Chinese).
孙杰, 王欢, 彭华新, 等. 材料科学与工程学报, 2019, 37(4), 664.
14 Jin M, Liu T W, Wang H Y, et al. Composites Part B, 2021, 207(2), 108563.
15 Zheng X Y, Ren Z Y, Shen L L, et al. Materials, 2021, 14(1), 187.
16 Xuan P. Experimental study on the damping mechanism and mechanical properties of high- performance aluminum form. Master's Thesis, Sout-heast University, China, 2016 (in Chinese).
轩鹏. 高性能泡沫铝减振机理及力学性能试验研究. 硕士学位论文, 东南大学, 2016.
17 Zheng X Y, Ren Z Y, Bai H B, et al. Defence Technology, DOI:10. 1016/j. dt. 2022. 03. 007.
18 Xiao K, Bai H B, Xue X, et al. Shock & Vibration, 2018, 11, 3974381.
19 Ding Z Y, Bai H B, Wu Y W, et al. Shock and Vibration, 2019, 2019, 1.
20 Zhang D Y, Scarpa F, Ma Y H, et al. Materials Science & Engineering A, 2013, 580(13), 305.
21 Zhang D Y, Scarpa F, Ma Y H, et al. Materials & Design, 2014, 56(1), 69.
22 Xu Y S, Xu Z D, Ge T, et al. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5), 1059 (in Chinese).
徐业守, 徐赵东, 葛腾, 等. 力学学报, 2017, 49(5), 1059.
[1] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[2] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[3] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[4] 阎格, 张慧娟, 蔡利海, 邵伟光, 刘文言. 燃料油与紫外光共同作用下热塑性聚氨酯结构与性能演变规律[J]. 材料导报, 2024, 38(6): 22050216-6.
[5] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[6] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[7] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[8] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[9] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[10] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[11] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[12] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[15] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed