Review and Evaluation of Fatigue Damage Evolution Models for Composite Laminates
FENG Weisen1, YANG Chengpeng1,*, JIA Fei2
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
Abstract: Fatigue damage evolution model is of great importance for predicting property degradation and fatigue life of materials.In this paper, a comprehensive review of fatigue damage evolution models for composite laminates is presented, and according to the three-stage (Ⅰ, Ⅱ, and Ⅲ) characteristics of the fatigue damage evolutions, the wear-out models are divided into two categories, i.e., Ⅰ-Ⅱ-Ⅲ three-stage models and Ⅰ-Ⅱ two-stage models. In order to validate and evaluate the selected models with relatively strong characterization ability, five basic criteria for model evaluation are suggested, and eight groups of experimental data on fatigue damage evolution under different loading conditions are adopted. The investigation show that most of the fatigue damage evolution models developed so far are recognized as macroscopic and phenomenological ones, which consider few influencing factors and rely heavily on experiments. For stages I and II, the two-stage wear-out models show high fitting accuracy. But in comparison, the three-stage wear-out models are more applicable than the two-stage ones, for their accurate simulation of the whole damage evolution process. While among those three-stage models, the Mao, Wu Fuqiang and Shiri models are more extensively cited and applied. To overcome the drawbacks of the phenomenological models, it is necessary to consider the microscopic damage modes and mechanisms under different influencing factors, and to develop physical-based fatigue damage evolution model and theory.
通讯作者:
* 杨成鹏,西北工业大学力学与土木建筑学院副教授、博士研究生导师。2006年西北工业大学工程力学专业本科毕业,2011年西北工业大学固体力学博士毕业后留校工作至今。目前主要从事先进复合材料及其结构的力学行为表征研究。发表论文30余篇,包括Composites Part A、Ceramics International、Journal of the American Ceramic Society、Journal of the European Ceramic Society等。yang@mail.nwpu.edu.cn
1 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1), 1 (in Chinese). 杜善义. 复合材料学报, 2007, 24(1), 1. 2 Middleton D H. Composite materials in aircraft structures, Longman Scientific & Technical, New York, 1990. 3 Shiri S, Pourgol-Mohammad M, Yazdani M. In:Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, Quebec, Canada, 2014, pp. 1. 4 Basquin O H. American Society of Testing Materials, 1910, 10, 625. 5 Wu F Q, Yao W X. Chinese Journal of Aeronautics, 2008, 21(3), 241. 6 Mu P G, Wan X P, Zhao M Y. Key Engineering Materials, 2011, 462-463, 484. 7 Arutyunyan A R. Doklady Physics, 2019, 64(10), 394. 8 Cheng X Q, Zou J, Yang K, et al. Failure Analysis and Prevention, 2008, 3(4), 8 (in Chinese). 程小全, 邹健, 杨琨, 等. 失效分析与预防, 2008, 3(4), 8. 9 Biner S B, Yuhas V C. Journal of Engineering Materials and Technology, 1989, 111(4), 363. 10 Shokrieh M M, Lessard L B. Journal of Composite Materials, 2000, 34(13), 1081. 11 Cheng X Q,Du X Y. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7), 1311 (in Chinese). 程小全, 杜晓渊. 北京航空航天大学学报, 2021, 47(7), 1311. 12 Zhao L, Shan M, Hong J, et al. Composite Structures, 2017, 169, 69. 13 Guo J H, Wen W D, Zhang H J, et al. International Journal of Fatigue, 2021, 152, 106455. 14 Aoki R, Higuchi R, Yokozeki T. International Journal of Fatigue, 2021, 143, 106015. 15 Zhou S, Yan L, Fu K K, et al. Thin-Walled Structures, 2021, 158, 107173. 16 Zhao S, Zhang J W. Acta Materiae Compositae Sinica, 2020, 37(10), 2473 (in Chinese). 赵晟, 张继文. 复合材料学报, 2020, 37(10), 2473. 17 Mao H, Mahadevan S. Composite Structures, 2002, 58, 405. 18 Hwang W, Han K S. Journal of Composite Materials, 1986, 20(3), 125. 19 Tong X Y, Wan X P, Sun Q, et al. Journal of Mechanical Strength, 1995, 17(3), 94 (in Chinese). 童小燕, 万小朋, 孙秦, 等. 机械强度, 1995, 17(3), 94. 20 Xuan F Z, Sun S X, Tang H W, et al. Acta Materiae Compositae Sinica, 1997, 14(3), 115 (in Chinese). 轩福贞, 孙树勋, 汤红卫, 等. 复合材料学报, 1997, 14(3), 115. 21 Qi W X, Yao W X, Shen H J. Applied Composite Materials, 2022, 29(5), 1795. 22 Miner M A. Journal of Applied Mechanics-Transactions of the ASME, 1945, 12(3), A159. 23 Cheng G X, Wei W, Li G Z. Materials for Mechanical Engineering, 2000, 24(5), 1 (in Chinese). 程光旭, 韦玮, 李光哲.机械工程材料, 2000, 24(5), 1. 24 Wu F Q, Yao W X. International Journal of Fatigue, 2010, 32(1), 134. 25 Mu P G, Wan X P, Zhao M Y. Mechanical Science and Technology, 2010, 29(4),441 (in Chinese). 穆朋刚, 万小朋, 赵美英. 机械科学与技术, 2010, 29(4), 441. 26 Shiri S, Yazdani M, Mohammad M P. Materials and Design, 2015, 88, 1290. 27 Liu H W, Zhang Z C, Jia H B, et al. Composite Structures, 2020, 233, 111736. 28 Varvani-Farahani A, Shirazi A. Science and Engineering of Composite Materials, 2007, 14(3), 197. 29 Qi H Y, Wen W D, Cui H T. Journal of Aerospace Power, 2003, 18(5), 658 (in Chinese). 齐红宇, 温卫东, 崔海涛.航空动力学报, 2003, 18(5), 658. 30 Laribi M A, Tamboura S, Fitoussi J, et al. Applied Composite Materials, 2021, 28(4), 973. 31 Song J B, An Z W, Tang T, et al. Acta Energiae Solaris Sinica, 2022, 43(3), 382 (in Chinese). 宋江北, 安宗文, 汤婷, 等. 太阳能学报, 2022, 43(3), 382. 32 Ye L. Composites Science and Technology, 1989, 36, 339. 33 Liu B Y, Lessard L B. Composites Science and Technology, 1994, 51, 43. 34 Zhang K D. Acta Aeronautica et Astronautica Sinica, 1997, 18(5), 623 (in Chinese). 张开达.航空学报, 1997, 18(5), 623. 35 Liu G X, Zhao M Y, Chang N. Journal of Mechanical Strength, 2009, 31(5), 817 (in Chinese). 刘关心, 赵美英, 常楠. 机械强度, 2009, 31(5), 817. 36 Chen H S, Hwang S F. Polymer Composites, 2009, 30(3), 301. 37 Degrieck J, Paepegem W V. Applied Mechanics Reviews, 2001, 54(4), 279. 38 Philippids T P, Passipoularidis V A. International Journal of Fatigue, 2007, 29(12), 2104. 39 Broutman L J, Sahu S. In: Composite materials: testing and design (Se-cond Conference), American Society for Testing and Materials, Anaheim, 1972, pp. 170. 40 Post N L, Case S W, Lesko J J. International Journal of Fatigue, 2008, 30(12), 2064. 41 Stojković N, Folić R, Pasternak H. International Journal of Fatigue, 2017, 103, 478. 42 Wang C, Zhang J W. Materials, 2020, 13(24), 5653. 43 Liu J F, Jia J, Zhuang W B, et al. Journal of Functional Materials, 2024, 55(2), 2063 (in Chinese). 刘敬福, 贾婧, 庄伟彬, 等. 功能材料, 2024, 55(2), 2063. 44 Gao J X, Zhu P N, Yuan P N, et al. Engineering Failure Analysis, 2022, 137, 106290. 45 Vanhari A K, Fagan E, Goggins J. Composite Structures, 2022, 287, 115384. 46 Yao W X, Himmel N. Composites Science and Technology, 2000, 60(1), 59. 47 Wu Z W, Fang G D, Fu M Q, et al. Composite Structures, 2019, 211, 546. 48 Du S M, Qiao S R. Journal of Mechanical Strength, 2012, 34(4), 604 (in Chinese). 杜双明, 乔生儒. 机械强度, 2012, 34(4), 604. 49 Mivehchi H, Varvani-Farahani A. Journal of Materials Science, 2010, 45(14), 3757. 50 Shanley F R. Rand Corp Santa Monica CA, 1953, 350, 1. 51 Henry D L. Transactions of the ASME, 1955, 77(6), 915. 52 Fatemi A, Yang L. International Journal of Fatigue, 1998, 20(1), 9. 53 Owen M J, Howe R J. Journal of Physics D: Applied Physics, 1972, 5(9), 1937. 54 Chaboche J L. Amzallag C, Leis B N and Rabbe P, Eds., Low cycle fatigue and life predictions, American Society for Testing and Materials, USA, 1982, pp. 81. 55 Marco S M, Starkey W L. Transactions of the ASME, 1954, 76, 627. 56 Whitworth H A. Transactions of the ASME, 1990, 112(3), 358. 57 Wang J. Engineering Fracture Mechanics, 1992, 41(3), 437. 58 Abúndez-Pliego A, Oliveros-Riego O F, Huegel J C, et al. Mechanics of Advanced Materials and Structures, DOI: 10.1080/15376494.2022.2079032. 59 Ramakrishnan V, Jayaraman N. Journal of Materials Science, 1993, 28(20), 5592. 60 Burhan I, Kim H S. Journal of Composites Science, 2018, 2(3), 38. 61 Lee C H, Jen M H R. Journal of Composite Materials, 2000, 34(11), 906. 62 Huang J, Pastor M L, Garnier C, et al. International Journal of Fatigue, 2019, 120, 87.