Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100058-11    https://doi.org/10.11896/cldb.22100058
  金属与金属基复合材料 |
复合材料层压板疲劳损伤演化模型的综述与评估
冯炜森1, 杨成鹏1,*, 贾斐2
1 西北工业大学力学与土木建筑学院,西安 710072
2 西安电子科技大学机电工程学院, 西安 710071
Review and Evaluation of Fatigue Damage Evolution Models for Composite Laminates
FENG Weisen1, YANG Chengpeng1,*, JIA Fei2
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
下载:  全 文 ( PDF ) ( 4970KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 疲劳损伤演化模型是材料疲劳性能退化与寿命预测的重要基础。本文对复合材料层压板的疲劳损伤演化模型进行了全面综述,针对材料损伤演化三阶段(Ⅰ、Ⅱ、Ⅲ)特征将其磨损模型分为两类:Ⅰ-Ⅱ-Ⅲ三阶段模型和Ⅰ-Ⅱ两阶段模型。提出了模型评估的五个基本标准,选取了八组不同加载条件下的疲劳损伤演化实验数据,对表征能力较强的疲劳磨损模型进行了分析评估。现有研究表明:绝大多数疲劳损伤演化模型属于宏观唯象模型,模型中引入的疲劳影响因素少,对实验的依赖程度高;对于Ⅰ-Ⅱ两阶段损伤,两阶段磨损模型具有很高的拟合精度;相比而言,Ⅰ-Ⅱ-Ⅲ三阶段磨损模型可准确模拟疲劳损伤演化全过程,比Ⅰ-Ⅱ两阶段磨损模型更具普适性,其中Mao、吴富强和Shiri的模型应用较为广泛。为了克服唯象模型的不足,须考虑不同影响因素下材料的微细观损伤形式和机理,进而发展基于物理机制的疲劳损伤演化理论和模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯炜森
杨成鹏
贾斐
关键词:  复合材料层压板  疲劳损伤  损伤演化模型  模型评估    
Abstract: Fatigue damage evolution model is of great importance for predicting property degradation and fatigue life of materials.In this paper, a comprehensive review of fatigue damage evolution models for composite laminates is presented, and according to the three-stage (Ⅰ, Ⅱ, and Ⅲ) characteristics of the fatigue damage evolutions, the wear-out models are divided into two categories, i.e., Ⅰ-Ⅱ-Ⅲ three-stage models and Ⅰ-Ⅱ two-stage models. In order to validate and evaluate the selected models with relatively strong characterization ability, five basic criteria for model evaluation are suggested, and eight groups of experimental data on fatigue damage evolution under different loading conditions are adopted. The investigation show that most of the fatigue damage evolution models developed so far are recognized as macroscopic and phenomenological ones, which consider few influencing factors and rely heavily on experiments. For stages I and II, the two-stage wear-out models show high fitting accuracy. But in comparison, the three-stage wear-out models are more applicable than the two-stage ones, for their accurate simulation of the whole damage evolution process. While among those three-stage models, the Mao, Wu Fuqiang and Shiri models are more extensively cited and applied. To overcome the drawbacks of the phenomenological models, it is necessary to consider the microscopic damage modes and mechanisms under different influencing factors, and to develop physical-based fatigue damage evolution model and theory.
Key words:  composite laminates    fatigue damage    damage evolution model    model evaluation
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TB332  
基金资助: 国家自然科学基金 (12072274)
通讯作者:  * 杨成鹏,西北工业大学力学与土木建筑学院副教授、博士研究生导师。2006年西北工业大学工程力学专业本科毕业,2011年西北工业大学固体力学博士毕业后留校工作至今。目前主要从事先进复合材料及其结构的力学行为表征研究。发表论文30余篇,包括Composites Part A、Ceramics International、Journal of the American Ceramic Society、Journal of the European Ceramic Society等。yang@mail.nwpu.edu.cn   
作者简介:  冯炜森,2021年6月于中北大学获得工学学士学位。现为西北工业大学力学与土木建筑学院硕士研究生,在杨成鹏副教授的指导下进行研究。目前主要从事先进复合材料疲劳性能研究。
引用本文:    
冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
FENG Weisen, YANG Chengpeng, JIA Fei. Review and Evaluation of Fatigue Damage Evolution Models for Composite Laminates. Materials Reports, 2024, 38(9): 22100058-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100058  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22100058
1 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1), 1 (in Chinese).
杜善义. 复合材料学报, 2007, 24(1), 1.
2 Middleton D H. Composite materials in aircraft structures, Longman Scientific & Technical, New York, 1990.
3 Shiri S, Pourgol-Mohammad M, Yazdani M. In:Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, Quebec, Canada, 2014, pp. 1.
4 Basquin O H. American Society of Testing Materials, 1910, 10, 625.
5 Wu F Q, Yao W X. Chinese Journal of Aeronautics, 2008, 21(3), 241.
6 Mu P G, Wan X P, Zhao M Y. Key Engineering Materials, 2011, 462-463, 484.
7 Arutyunyan A R. Doklady Physics, 2019, 64(10), 394.
8 Cheng X Q, Zou J, Yang K, et al. Failure Analysis and Prevention, 2008, 3(4), 8 (in Chinese).
程小全, 邹健, 杨琨, 等. 失效分析与预防, 2008, 3(4), 8.
9 Biner S B, Yuhas V C. Journal of Engineering Materials and Technology, 1989, 111(4), 363.
10 Shokrieh M M, Lessard L B. Journal of Composite Materials, 2000, 34(13), 1081.
11 Cheng X Q,Du X Y. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7), 1311 (in Chinese).
程小全, 杜晓渊. 北京航空航天大学学报, 2021, 47(7), 1311.
12 Zhao L, Shan M, Hong J, et al. Composite Structures, 2017, 169, 69.
13 Guo J H, Wen W D, Zhang H J, et al. International Journal of Fatigue, 2021, 152, 106455.
14 Aoki R, Higuchi R, Yokozeki T. International Journal of Fatigue, 2021, 143, 106015.
15 Zhou S, Yan L, Fu K K, et al. Thin-Walled Structures, 2021, 158, 107173.
16 Zhao S, Zhang J W. Acta Materiae Compositae Sinica, 2020, 37(10), 2473 (in Chinese).
赵晟, 张继文. 复合材料学报, 2020, 37(10), 2473.
17 Mao H, Mahadevan S. Composite Structures, 2002, 58, 405.
18 Hwang W, Han K S. Journal of Composite Materials, 1986, 20(3), 125.
19 Tong X Y, Wan X P, Sun Q, et al. Journal of Mechanical Strength, 1995, 17(3), 94 (in Chinese).
童小燕, 万小朋, 孙秦, 等. 机械强度, 1995, 17(3), 94.
20 Xuan F Z, Sun S X, Tang H W, et al. Acta Materiae Compositae Sinica, 1997, 14(3), 115 (in Chinese).
轩福贞, 孙树勋, 汤红卫, 等. 复合材料学报, 1997, 14(3), 115.
21 Qi W X, Yao W X, Shen H J. Applied Composite Materials, 2022, 29(5), 1795.
22 Miner M A. Journal of Applied Mechanics-Transactions of the ASME, 1945, 12(3), A159.
23 Cheng G X, Wei W, Li G Z. Materials for Mechanical Engineering, 2000, 24(5), 1 (in Chinese).
程光旭, 韦玮, 李光哲.机械工程材料, 2000, 24(5), 1.
24 Wu F Q, Yao W X. International Journal of Fatigue, 2010, 32(1), 134.
25 Mu P G, Wan X P, Zhao M Y. Mechanical Science and Technology, 2010, 29(4),441 (in Chinese).
穆朋刚, 万小朋, 赵美英. 机械科学与技术, 2010, 29(4), 441.
26 Shiri S, Yazdani M, Mohammad M P. Materials and Design, 2015, 88, 1290.
27 Liu H W, Zhang Z C, Jia H B, et al. Composite Structures, 2020, 233, 111736.
28 Varvani-Farahani A, Shirazi A. Science and Engineering of Composite Materials, 2007, 14(3), 197.
29 Qi H Y, Wen W D, Cui H T. Journal of Aerospace Power, 2003, 18(5), 658 (in Chinese).
齐红宇, 温卫东, 崔海涛.航空动力学报, 2003, 18(5), 658.
30 Laribi M A, Tamboura S, Fitoussi J, et al. Applied Composite Materials, 2021, 28(4), 973.
31 Song J B, An Z W, Tang T, et al. Acta Energiae Solaris Sinica, 2022, 43(3), 382 (in Chinese).
宋江北, 安宗文, 汤婷, 等. 太阳能学报, 2022, 43(3), 382.
32 Ye L. Composites Science and Technology, 1989, 36, 339.
33 Liu B Y, Lessard L B. Composites Science and Technology, 1994, 51, 43.
34 Zhang K D. Acta Aeronautica et Astronautica Sinica, 1997, 18(5), 623 (in Chinese).
张开达.航空学报, 1997, 18(5), 623.
35 Liu G X, Zhao M Y, Chang N. Journal of Mechanical Strength, 2009, 31(5), 817 (in Chinese).
刘关心, 赵美英, 常楠. 机械强度, 2009, 31(5), 817.
36 Chen H S, Hwang S F. Polymer Composites, 2009, 30(3), 301.
37 Degrieck J, Paepegem W V. Applied Mechanics Reviews, 2001, 54(4), 279.
38 Philippids T P, Passipoularidis V A. International Journal of Fatigue, 2007, 29(12), 2104.
39 Broutman L J, Sahu S. In: Composite materials: testing and design (Se-cond Conference), American Society for Testing and Materials, Anaheim, 1972, pp. 170.
40 Post N L, Case S W, Lesko J J. International Journal of Fatigue, 2008, 30(12), 2064.
41 Stojković N, Folić R, Pasternak H. International Journal of Fatigue, 2017, 103, 478.
42 Wang C, Zhang J W. Materials, 2020, 13(24), 5653.
43 Liu J F, Jia J, Zhuang W B, et al. Journal of Functional Materials, 2024, 55(2), 2063 (in Chinese).
刘敬福, 贾婧, 庄伟彬, 等. 功能材料, 2024, 55(2), 2063.
44 Gao J X, Zhu P N, Yuan P N, et al. Engineering Failure Analysis, 2022, 137, 106290.
45 Vanhari A K, Fagan E, Goggins J. Composite Structures, 2022, 287, 115384.
46 Yao W X, Himmel N. Composites Science and Technology, 2000, 60(1), 59.
47 Wu Z W, Fang G D, Fu M Q, et al. Composite Structures, 2019, 211, 546.
48 Du S M, Qiao S R. Journal of Mechanical Strength, 2012, 34(4), 604 (in Chinese).
杜双明, 乔生儒. 机械强度, 2012, 34(4), 604.
49 Mivehchi H, Varvani-Farahani A. Journal of Materials Science, 2010, 45(14), 3757.
50 Shanley F R. Rand Corp Santa Monica CA, 1953, 350, 1.
51 Henry D L. Transactions of the ASME, 1955, 77(6), 915.
52 Fatemi A, Yang L. International Journal of Fatigue, 1998, 20(1), 9.
53 Owen M J, Howe R J. Journal of Physics D: Applied Physics, 1972, 5(9), 1937.
54 Chaboche J L. Amzallag C, Leis B N and Rabbe P, Eds., Low cycle fatigue and life predictions, American Society for Testing and Materials, USA, 1982, pp. 81.
55 Marco S M, Starkey W L. Transactions of the ASME, 1954, 76, 627.
56 Whitworth H A. Transactions of the ASME, 1990, 112(3), 358.
57 Wang J. Engineering Fracture Mechanics, 1992, 41(3), 437.
58 Abúndez-Pliego A, Oliveros-Riego O F, Huegel J C, et al. Mechanics of Advanced Materials and Structures, DOI: 10.1080/15376494.2022.2079032.
59 Ramakrishnan V, Jayaraman N. Journal of Materials Science, 1993, 28(20), 5592.
60 Burhan I, Kim H S. Journal of Composites Science, 2018, 2(3), 38.
61 Lee C H, Jen M H R. Journal of Composite Materials, 2000, 34(11), 906.
62 Huang J, Pastor M L, Garnier C, et al. International Journal of Fatigue, 2019, 120, 87.
[1] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[2] 房辰泽, 郭乃胜, 蒋继望, 冷真, 李辉, 陆国阳, 王昊鹏. 加载次序对沥青混合料疲劳损伤累积的影响[J]. 材料导报, 2023, 37(24): 22080209-6.
[3] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[4] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[5] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[6] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[7] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[8] 肖敏, 罗迎社, 司家勇, 刘秀波. 金属非对称循环下的匀变速加载问题[J]. 《材料导报》期刊社, 2018, 32(4): 676-680.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed