Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21040223-10    https://doi.org/10.11896/cldb.21040223
  高分子与聚合物基复合材料 |
增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征
杨荣周1,2, 陈佩圆2, 葛进进2, 徐颖1,2,*, 王佳2, 刘家兴2, 谢昊天2
1 安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001
2 安徽理工大学土木建筑学院,安徽 淮南 232001
Fatigue Characteristics of CFRP Sheet Confined Rubber Cement Mortar Under Increasing Amplitude Cyclic Load
YANG Rongzhou1,2, CHEN Peiyuan2, GE Jinjin2, XU Ying1,2,*, WANG Jia2, LIU Jiaxing2, XIE Haotian2
1 State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China
2 School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, Anhui, China
下载:  全 文 ( PDF ) ( 7826KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高橡胶水泥基材料的承载能力和抗疲劳性能,对普通橡胶砂浆(N-RCM)和碳纤维增强聚合物(CFRP)材料约束型橡胶砂浆(C-RCM)进行了增幅型循环加-卸载试验,并从荷载-变形曲线、破坏状态、变形、模量以及能量等方面对比分析了两种试件在试验过程中的疲劳损伤演化特征。结果表明,与N-RCM相比,C-RCM具有非常好的韧性和延性,在峰值荷载和峰值变形两个方面分别提高了1.38倍、2.47倍。N-RCM表现出材料较为常规的剪切破坏,而C-RCM却表现出材料大量蓄能后的瞬时膨胀爆炸破坏。与N-RCM相比,C-RCM加、卸载变形模量的最大值分别对应提高了42.32%和26.19%;C-RCM的弹性能和累积损伤能分别提高了4.97倍、45.57倍,表明CFRP可以显著提高橡胶砂浆材料的储能和耗能能力。N-RCM的疲劳损伤增长速率显著大于C-RCM,说明CFRP对促进橡胶砂浆材料通过增大疲劳屈服过程来充分发挥结构抗力起到关键作用,有效延缓了疲劳损伤的发展。最后,分析讨论了N-RCM和C-RCM在断裂破坏机理方面的差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨荣周
陈佩圆
葛进进
徐颖
王佳
刘家兴
谢昊天
关键词:  CFRP  橡胶砂浆  循环加-卸载  疲劳损伤    
Abstract: To improve the bearing capacity and fatigue resistance of rubber cement-based materials, cyclic loading-unloading tests of normal rubber cement mortar (N-RCM) and carbon fiber reinforced polymers (CFRP) confined rubber cement mortar (C-RCM) were carried out, and the fatigue damage evolution characteristics of the two specimens were compared and analyzed from the aspects of the load-deformation curve, fai-lure state, deformation, modulus and energy. The results show that compared with N-RCM, C-RCM has ideal toughness and ductility, and its peak load and peak deformation increase by 1.38 times and 2.47 times, respectively. N-RCM shows conventional shear failure, while C-RCM shows instantaneous expansion explosion failure after a large amount of energy storage. Compared with the maximum moduli of loading and unloading of N-RCM, the two of C-RCM increase by 42.32% and 26.19%, respectively. The elastic energy and cumulative damage energy of C-RCM increase by 4.97 times and 45.57 times, respectively, compared with those of N-RCM, indicating that CFRP significantly improves the energy storage and energy dissipation capacity of rubber mortar. The fatigue damage growth rate of N-RCM is significantly higher than that of C-RCM, indicating that CFRP plays a key role in promoting the rubber mortar material to give full play to its structural resistance by increasing the fatigue yield process, and effectively delays the development of fatigue damage. Finally, the difference of fracture mechanism between N-RCM and C-RCM was analyzed and discussed.
Key words:  carbon fiber reinforced polymers (CFRP)    rubber mortar    cyclic loading-unloading    fatigue damage
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB332  
基金资助: 国家自然科学基金面上项目(52074009);安徽省重点研究与开发项目(201904a07020081)
通讯作者:  yxu@aust.edu.cn   
作者简介:  杨荣周,2017年9月硕士就读于安徽理工大学土木建筑学院,并于2019年9月硕博连读。现为安徽理工大学土木建筑学院博士研究生,在徐颖教授的指导下进行科学研究。目前主要研究领域为土木工程材料的冲击动力学行为与动力响应特征以及围岩支护与深部岩体稳定性控制技术。
徐颖,安徽理工大学土木建筑学院教授、博士研究生导师。2003年12月博士毕业于中国科学技术大学工程科学学院。目前主要从事土木工程材料、冲击动力学、隧道及地下工程施工技术、爆破理论与技术等方向的教学和科研工作。先后主持了国家自然科学基金重点项目、面上项目及省部级项目20余项。发表国内外学术论文150余篇,出版《地下工程爆破理论及应用》《软弱层带爆炸注浆理论与实践》等学术专著和教材5部。获教育部新世纪优秀人才、全国有突出贡献爆破专家等荣誉称号,学术兼职为中国爆破行业协会副会长、中国力学学会工程爆破专业委员会副主任委员、中国煤炭工业委员会爆破器材与技术专家委员会主任等。
引用本文:    
杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
YANG Rongzhou, CHEN Peiyuan, GE Jinjin, XU Ying, WANG Jia, LIU Jiaxing, XIE Haotian. Fatigue Characteristics of CFRP Sheet Confined Rubber Cement Mortar Under Increasing Amplitude Cyclic Load. Materials Reports, 2022, 36(9): 21040223-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040223  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21040223
1 Yazdani S, Asadollahi S, Shoaei P, et al. Engineering Failure Analysis, 2021, 122, 105219.
2 Sun F J, Pang S H, Zhang Z W, et al. Composite Structures, 2020, 236, 111927.
3 Khan I, Shahzada K, Bibi T, et al. Structures, 2021, 30, 41.
4 Youssfa O, ElGawady M A, Mills J E. Structures, 2015, 3, 13.
5 Pacheco-Torres R, Cerro-Prada E, Escolano F, et al. Construction and Building Materials, 2018, 176, 539.
6 Yang F, Feng W, Liu F, et al. Construction and Building Materials, 2019, 198, 423.
7 Feng W, Chen B, Yang F, et al. Journal of Building Engineering, 2021, 33, 101610.
8 Zhang Q, Wang L. Construction and Building Materials, 2021, 269, 121287.
9 Li P, Wu Y F, Gravina R. Construction and Building Materials, 2016, 123, 814.
10 He Q F, Yue L Y, Mao J W. Journal of Vibration and Shock, 2021, 40(4), 171(in Chinese).
何庆锋, 岳泪阳, 毛佳伟. 振动与冲击, 2021, 40(4), 171.
11 Wang Z, Wang D, Smith S T, et al. Engineering Structures, 2012, 40, 64.
12 Liu M Y, Lu J, Ming P, et al. Acta Materiae Compositae Sinica, 2021(5),1594(in Chinese).
刘妙燕, 陆俊, 明攀, 等. 复合材料学报, 2021(5),1594.
13 Xie J, Zheng Y, Guo Y, et al. Composite Structures, 2019, 228, 111371.
14 Pacheco-Torres R, Cerro-Prada E, Escolano F, et al. Construction and Building Materials, 2018, 176, 539.
15 Bompa D V, Elghazouli A Y. Construction and Building Materials, 2019, 209, 126.
16 Xu Y, Yang R. Journal of Materials in Civil Engineering, 2020, 32(10), 04020309.
17 Yang R Z, Xu Y, Zheng Q Q, et al. Journal of Building Materials, 2021, 24(5), 961(in Chinese).
杨荣周, 徐颖, 郑强强, 等. 建筑材料学报, 2021, 24(5), 961.
18 Yang R, Xu Y, Chen P, et al. Journal of Central South University, 2021, 28(7), 2158.
19 Li T, Pei X, Wang D, et al. Engineering Fracture Mechanics, 2019, 206, 330.
20 Gambarelli S, Nisticò N, Ožbolt J. Composites Part B: Engineering, 2014, 67, 303.
21 Fan J, Jiang D, Chen J, et al. Construction and Building Materials, 2018, 166, 974.
22 Jin L, Chen H, Wang Z, et al. Composite Structures, 2020, 254, 112843.
23 Yu Z, Tang R, Li F,et al. Construction and Building Materials, 2021, 288, 123105.
[1] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[2] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[3] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[4] 高婧, 罗城. 基于SWT模型和威布尔分布的CFRP环带微动疲劳寿命预测[J]. 材料导报, 2021, 35(16): 16015-16020.
[5] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[6] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[7] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[8] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[9] 肖敏, 罗迎社, 司家勇, 刘秀波. 金属非对称循环下的匀变速加载问题[J]. 《材料导报》期刊社, 2018, 32(4): 676-680.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed