REVIEW PAPER |
|
|
|
|
|
A Survey on Preparation and Application of Aerogels Based on Nanomaterials |
Qingshun GUAN1,Jian LI1,Ruyuan SONG1,Zhaoyang XU2,Weibing WU1,Yi JING1,Hongqi DAI1,Guigan FANG3
|
1 Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037 2 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 3 Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042 |
|
|
Abstract Aerogels possess the characteristics of high porosity, large specific surface area and low density because of their consecutive 3D network and porous structure. Fabricating aerogels with nanomaterials can improve the porous structure and mechanical strength, and further endue aerogels with special features including high conductivity, low heat conductivity, high adsorption capacity, good sound insulation, etc. Therefore, aerogels based on nanomaterials have significant applications in the fields of energy storage, thermal insulation and materials adsorption. This review summarizes the fabrication, structure, properties and applications of aerogels based on nanomaterials with various morphology including nanoparticles, nanocelluloses, carbon nanofibers, carbon nanotubes and graphene in recent years. Finally, the future development of aerogels based on nanomaterials is pointed out.
|
Published: 10 February 2018
Online: 2018-02-10
|
|
|
|
|
NFC浓度为0.2%、0.4%、0.6%(质量分数)的气凝胶分别在密度为2.7 mg/cm3、5.2 mg/cm3、8.1 mg/cm3时的压缩应力-应变曲线[29]
|
|
NFC浓度为0.2%、0.4%、0.6%(质量分数)的气凝胶分别在密度为2.7 mg/cm3、5.2 mg/cm3、8.1 mg/cm3时的压缩应力-应变曲线[29]
|
1 | Lai F, Huang Y, Zuo L , et al. Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016,4(41):15861. | 2 | De Marco M, Markoulidis F, Menzel R , et al. Cross-linked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry[J]. Journal of Materials Chemistry A, 2016,4(15):5385. | 3 | Zhang F, Wu W, Zhang X , et al. Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release[J]. Cellulose, 2016,23(1):415. | 4 | Freytag A, Sánchez-Paradinas S, Naskar S , et al. Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions[J]. Angewandte Chemie International Edition, 2016,55(3):1200. | 5 | Dong W, Rhine W, Caggiano G, et al. Characterization of bismuth telluride aerogels for thermoelectric applications [C]∥Materials Research Society Symposium Proceedings.Boston,MA,United States, 2010. | 6 | Zheng H, Shan H, Bai Y , et al. Assembly of silica aerogels within silica nanofibers: Towards a super-insulating flexible hybrid aerogel membrane[J]. RSC Advances, 2015,5(111):91813. | 7 | Gleiter H . Nanostructured materials: State of the art and perspectives[J]. Nanostructured Materials, 1995,6(1-4):3. | 8 | Korhonen J T, Kettunen M , Ras R H A, et al. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents[J]. ACS Applied Materials & Interfaces, 2011,3(6):1813. | 9 | He Y, Bai Y, Yang X , et al. Holey graphene/polypyrrole nanoparticle hybrid aerogels with three-dimensional hierarchical porous structure for high performance supercapacitor[J]. Journal of Power Sources, 2016,317:10. | 10 | Liu X, Li J, Sun J , et al. 3D Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature[J]. RSC Advances, 2015,5(90):73699. | 11 | Arachchige I U, Brock S L . Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks[J]. Journal of the American Che-mical Society, 2006,128(24):7964. | 12 | Mohanan J L, Brock S L . A new addition to the aerogel community: Unsupported CdS aerogels with tunable optical properties[J]. Journal of Non-crystalline Solids, 2004,350:1. | 13 | Arachchige I U, Brock S L . Highly luminescent quantum-dot monoliths[J]. Journal of the American Chemical Society, 2007,129(7):1840. | 14 | Hendel T, Lesnyak V, Kühn L , et al. Mixed aerogels from Au and CdTe nanoparticles[J]. Advanced Functional Materials, 2013,23(15):1903. | 15 | Heiligtag F J, Kr?nzlin N, Süess M J , et al. Anatase-silica compo-site aerogels: A nanoparticle-based approach[J]. Journal of Sol-Gel Science and Technology, 2014,70(2):300. | 16 | Rechberger F, Ilari G, Niederberger M . Assembly of antimony doped tin oxide nanocrystals into conducting macroscopic aerogel monoliths[J]. Chemical Communications, 2014,50(86):13138. | 17 | Rechberger F, St?dler R, Tervoort E , et al. Strategies to improve the electrical conductivity of nanoparticle-based antimony-doped tin oxide aerogels[J]. Journal of Sol-Gel Science and Technology, 2016,80(3):660. | 18 | Bigall N C, Herrmann A K, Vogel M , et al. Hydrogels and aerogels from noble metal nanoparticles[J]. Angewandte Chemie Internatio-nal Edition, 2009,48(51):9731. | 19 | Bigall N C, Eychmüller A . Synjournal of noble metal nanoparticles and their non-ordered superstructures[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010,368(1915):1385. | 20 | Gill S K, Brown P , Hope-Weeks L J. Gold modified cadmium sulfide aerogels[J]. Journal of Sol-Gel Science and Technology, 2011,57(1):68. | 21 | Gill, Simerjeet K , Louisa J Hope-Weeks. Monolithic aerogels of silver modified cadmium sulfide colloids[J]. Chemical Communications, 2009,29:4384. | 22 | Ganguly S, Brock S L . Toward nanostructured thermoelectrics: Synjournal and characterization of lead telluride gels and aerogels[J]. Journal of Materials Chemistry, 2011,21(24):8800. | 23 | Kalebaila K K, Georgiev D G, Brock S L . Synjournal and characte-rization of germanium sulfide aerogels[J]. Journal of Non-crystalline Solids, 2006,352(3):232. | 24 | Abitbol T, Rivkin A, Cao Y , et al. Nanocellulose,a tiny fiber with huge applications[J]. Current Opinion in Biotechnology, 2016,39:76. | 25 | Mishra S P, Manent A S, Chabot B , et al. Production of nanocellulose from native cellulose-various options utilizing ultrasound[J]. BioResources, 2011,7(1):0422. | 26 | Qin Z Y, Tong G , Chin Y C F, et al. Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation[J]. BioResources, 2011,6(2):1136. | 27 | Chen W, Li Q, Wang Y , et al. Comparative study of aerogels obtained from differently prepared nanocellulose fibers[J]. ChemSusChem, 2014,7(1):154. | 28 | Jiang F, Hsieh Y L . Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A, 2014,2(18):6337. | 29 | Jiang F, Hsieh Y L . Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing[J]. Journal of Materials Chemistry A, 2014,2(2):350. | 30 | Xiao S, Gao R, Lu Y , et al. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles[J]. Carbohydrate Polymers, 2015,119:202. | 31 | Cervin N T, Aulin C, Larsson P T , et al. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids[J]. Cellulose, 2012,19(2):401. | 32 | Zhang Z, Sèbe G, Rentsch D , et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water[J]. Chemistry of Materials, 2014,26(8):2659. | 33 | Zhang F, Wu W, Sharma S , et al. Synjournal of cyclodextrin-functionalized cellulose nanofibril aerogel as a highly effective adsorbent for phenol pollutant removal[J]. BioResources, 2015,10(4):7555. | 34 | Toivonen M S, Kaskela A, Rojas O J , et al. Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices[J]. Advanced Functional Materials, 2015,25(42):6618. | 35 | Yang H , Sheikhi A, van de Ven T G M. Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal[J]. Langmuir, 2016,32(45):11771. | 36 | Leitch M E, Li C, Ikkala O , et al. Bacterial nanocellulose aerogel membranes:Novel high-porosity materials for membrane distillation[J]. Environmental Science & Technology Letters, 2016,3(3):85. | 37 | Sai H, Fu R, Xing L , et al. Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation[J]. ACS Applied Materials & Interfaces, 2015,7(13):7373. | 38 | Pircher N, Veigel S, Aigner N , et al. Reinforcement of bacterial cellulose aerogels with biocompatible polymers[J]. Carbohydrate Polymers, 2014,111:505. | 39 | Tran P A, Zhang L, Webster T J . Carbon nanofibers and carbon nanotubes in regenerative medicine[J]. Advanced Drug Delivery Reviews, 2009,61(12):1097. | 40 | Liang H W, Guan Q F, Chen L F , et al. Macroscopic-scale template synjournal of robust carbonaceous nanofiber hydrogels and aerogels and their applications[J]. Angewandte Chemie International Edition, 2012,51(21):5101. | 41 | Song L T, Wu Z Y, Liang H W , et al. Macroscopic-scale synjournal of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates[J]. Nano Energy, 2016,19:117. | 42 | Meng F, Li L, Wu Z , et al. Facile preparation of N-doped carbon nanofiber aerogels from bacterial cellulose as an efficient oxygen reduction reaction electrocatalyst[J]. Chinese Journal of Catalysis, 2014,35(6):877. | 43 | Wu Z Y, Li C, Liang H W , et al. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions[J]. Scientific Reports, 2014,4(2):4079. | 44 | Wu Z Y, Li C, Liang H W , et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte Chemie, 2013,125(10):2997. | 45 | Hayase G, Nonomura K, Hasegawa G , et al. Ultralow-density,transparent,superamphiphobic boehmite nanofiber aerogels and their alumina derivatives[J]. Chemistry of Materials, 2014,27(1):3. | 46 | Boday D J, Muriithi B, Stover R J , et al. Polyaniline nanofiber-silica composite aerogels[J]. Journal of Non-Crystalline Solids, 2012,358(12):1575. | 47 | Thostenson E T, Ren Z, Chou T W . Advances in the science and technology of carbon nanotubes and their composites: A review[J]. Composites Science and Technology, 2001,61(13):1899. | 48 | Araby S, Qiu A, Wang R , et al. Aerogels based on carbon nanomaterials[J]. Journal of Materials Science, 2016,51(20):9157. | 49 | Mikhalchan A, Fan Z, Tran T Q , et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method[J]. Carbon, 2016,102:409. | 50 | Shen Y, Du A, Wu X L , et al. Low-cost carbon nanotube aerogels with varying and controllable density[J]. Journal of Sol-Gel Science and Technology, 2016,79(1):76. | 51 | Li Y, Zhao M, Chen J , et al. Flexible chitosan/carbon nanotubes aerogel, a robust matrix for in-situ growth and non-enzymatic biosensing applications[J]. Sensors and Actuators B:Chemical, 2016,232:750. | 52 | Gui X, Wei J, Wang K , et al. Carbon nanotube sponges[J]. Advanced Materials, 2010,22(5):617. | 53 | Van Aken K L, Pérez C R, Oh Y , et al. High rate capacitive performance of single-walled carbón nanotube aerogels[J]. Nano Energy, 2015,15:662. | 54 | Geim A K, Novoselov K S . The rise of graphene[J]. Nature mate-rials, 2007,6(3):183. | 55 | Geim A K . Graphene: Status and prospects[J]. Science, 2009,324(5934):1530. | 56 | Liu T, Huang M, Li X , et al. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J]. Carbon, 2016,100:456. | 57 | Yang S L, Zhang L, Yang Q Y , et al. Graphene aerogel prepared by thermal evaporation of graphene oxide suspension containing sodium bicarbonate[J]. Journal of Material Chemistry A, 2015,3(15):7950. | 58 | Chen Z, Ren W, Gao L , et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011,10(6):424. | 59 | Alizadeh T, Ahmadian F . Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia[J]. Analytica Chimica Acta, 2015,897:87. | 60 | Xu Y, Lin Z, Huang X , et al. Functionalized graphene hydrogel-based high-performance supercapacitors[J]. Advanced Materials, 2013,25(40):5779. | 61 | Dai J, Huang T, Tian S , et al. High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment[J]. Materials & Design, 2016,107:187. | 62 | Xu X, Yan S, Wang B , et al. Graphene aerogel/platinum nanoparticle nanocomposites for direct electrochemistry of cytochrome and hydrogen peroxide sensing[J]. Journal of Nanoscience and Nanotech-nology, 2016,16(12):12299. | 63 | Gao K, Shao Z, Li J , et al. Cellulose nanofiber-graphene all solid-state flexible supercapacitors[J]. Journal of Materials Chemistry A, 2013,1(1):63. | 64 | Huang Y, Lai F, Zhang L , et al. Elastic carbon aerogels reconstructed from electrospun nanofibers and graphene as three-dimensional networked matrix for efficient energy storage/conversion[J]. Scientific Reports, 2016,6:31541. | 65 | Kim T W, Park S J . Synjournal of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor[J]. Journal of Colloid and Interface Science, 2017,486:287. | 66 | Lv P, Yu K, Tan X , et al. Super-elastic graphene/carbon nanotube aerogels and their application as a strain-gauge sensor[J]. RSC Advances, 2016,6(14):11256. | 67 | Lv P, Tan X W, Yu K H , et al. Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties[J]. Carbon, 2016,99:222. | 68 | Wan W, Zhang R, Li W , et al. Graphene-carbon nanotube aerogel as an ultra-light,compressible and recyclable highly efficient absorbent for oil and dyes[J]. Environmental Science:Nano, 2016,3(1):107. |
|
|
|
|