REVIEW PAPER |
|
|
|
|
|
Molecular-scale Design of Asphalt Materials |
Xinxing ZHOU1,Shaopeng WU2,Xiao ZHANG1,Quantao LIU2,Song XU3,Shuai WANG1
|
1 Key Laboratory of Highway Construction and Maintenance in Loess Region, Shanxi Transportation Research Institute,Taiyuan 030006 2 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology,Wuhan 430070 3 College of Civil Engineering, Fuzhou University, Fuzhou 350103 |
|
|
Abstract The cardinal issue of molecular-scale design of asphalt materials is the properties prediction via multi-scaled molecular simulation which consequently provide guidance for developing modified asphalt with certain performance. Main methodologies of the molecular-scale design include quantum-mechanical methods, Monte Carlo methods, and molecular dynamics simulations. This review provides a conclusion on the material design, asphaltene models, bitumen models, and the application of quantum mechanics and molecular simulation. It focuses on simulation and calculation methods for the commonly used physical and mechanical properties of modified asphalt materials, and the relevant researches.
|
Published: 10 February 2018
|
|
|
|
|
The (a) hierarchical model, (b) Groenzin and Mullins model,(c) modified Yen model, (d) nanoscience model for asphaltenes
|
|
Rogel’s 12 models of asphaltene
|
|
Representative average chemical structural models for asphaltenes
|
|
(a) Kuznicki’s 4 models of asphaltene; (b) Artok’s model of asphaltene; (c)Derek’s model of asphaltenes;(d) Khafji’s average model structures of asphaltene
|
|
Jennings’ eight models of bitumen binders
|
|
(a) Amorphous cell 3D model of bitumen; (b) 3D model of linear-SBS-modified bitumen
|
|
The four-component bitumen model: (a) asphaltenes; (b) naphthene aromatics;(c) polar aromatics;(d) saturates
|
|
(a) Density and temperature relationships obtained via Monte Carlo simulation and experiment; (b) density and temperature relationships of asphaltene 1(C64H52S2)and asphaltene 2 (C72H98S)
|
|
Temperature dependences of (a) density and (b) energy of asphalt, graphene-modified asphalt and CNTs-modified asphalt[61]
|
Type | Etotal | Esurface | Easphalt | Einterface | Basalt concrete Steel slag concrete Andesite concrete | 34 635.8 30 811 31 107.8 | -214.3 -457.5 -225.2 | 17 135.8 115 362 15 610.4 | -17 714.3 84 093.5 -15 722.6 |
|
The interfacial adhesion energy (kJ/mol) of some asphalt mixtures
|
Temperature/K | D /(10-8 m·s-2) | Relax time/ps | 255.15 298.15 333.15 408.15 436.15 | 3.292 4.608 5.553 5.980 6.247 | 2.991 0.479 0.341 0.291 0.162 |
|
The diffusion coefficients and relaxation times of asphaltene at different temperatures
|
|
The three modes of asphaltene interaction
|
δ1 | δs | δexp | | Asphaltene | 18.4314 | 20—22 | | Toluene | 18.4044 | 18.3 | | Benzene | 18.8078 | 18.7 | | Pyridine | 21.2766 | 21.7 | | n-pentane | 14.3731 | 14.4 | | n-hexane | 14.9379 | 14.9 | | n-heptane | 15.3088 | 15.3 | | δ2 | δD | δP | δH | Crude oil | 17.7 | 4 | 0.6 | Asphalt | 18.4 | 3.9 | 3.6 | Asphaltene | 19.6 | 3.4 | 4.4 | Maltene | 17.7 | 5.8 | 2.5 | Polystyrene | 18.5 | 4.5 | 2.9 | Docosane | 15.85 | 0 | 0 | Dimethylnaphthalene | 18.8 | 0 | 0 | 4-ethyl-dibenzothiophene | 21.1 | 1.6 | 6 | 3-pentylthiophene | 18.9 | 1.25 | 2.6 | 7,8-benzoquinoline | 19.5 | 3.7 | 5.7 | Methylbenzo cyclohexane | 20.4 | 0.49 | 0 |
|
Hildebrand and Hansen solubility parameters(MPa1/2)
|
Asphalt system | Tc(docosane) | Tc(dimethylnaphthalene) | 443.15 K 400 K 358.15 K 298.15 K | 0.048 0.21 147.2 182.8 | 0.004 7 0.011 9 0.215 1.934 |
|
Relaxation time Tc (ns) for n-C22 and dimethylnaphthalene molecules
|
|
Gyration radii of recycled asphalts differed in addition amount of bio-oil regenerant[86]
|
1 | Fu H, Xie L, Dou D , et al. Storage stability and compatibility of asphalt binder modified by SBS graft co-polymer[J]. Construction & Building Materials, 2007,21:1528. | 2 | Wei J, Liu Z, Zhang Y . Rheological properties of amorphous poly alpha olefin (APAO) modified asphalt binders[J]. Construction & Building Materials, 2013,48:533. | 3 | Zhou X, Zhang G, Liu R , et al. Molecular simulations of anti-aging mechanisms on Nano-LDHs modified asphalt[J]. Key Engineering Materials, 2014,599:198. | 4 | Zhou X, Wu S, Liu Q , et al. Effect of surface active agents on the rheological properties and solubility of LDHs modified asphalt[J]. Materials Research Innovations, 2015,19:972. | 5 | Greenfield M L . Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011,12:325. | 6 | Boek E S, Yakovlev D S, Headen T F . Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation[J]. Energy Fuels, 2009,23:1209. | 7 | Pan T, Yu Q , Stephen. Quantum-chemistry based study of beech-wood lignin as an antioxidant of petroleum asphalt[J]. Journal of Materials in Civil Engineering, 2013,10:1477. | 8 | Allen M P, Tildesley D J. Computer simulation of liquids[M]. New York: Oxford University Press, 1989. | 9 | Zhang L, Greenfield M L . Analyzing properties of model asphalts using molecular simulation[J]. Energy Fuels, 2007,21:1712. | 10 | Zhang L, Greenfield M L . Effects of polymer modification on pro-perties and micro-structure of model asphalt systems[J]. Energy Fuels, 2008,22:3363. | 11 | Zhang L, Greenfield M L . Molecular orientation in model asphalts using molecular simulation[J]. Energy Fuels, 2007,21:1102. | 12 | Groenzin H G, Mullins O C . Molecular size and structure of asphal-tenes from various sources[J]. Energy Fuels, 2000,14(3):677. | 13 | Li D D, Greenfield M L . Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014,115:347. | 14 | Groenzin H, Mullins O . Molecular size and structure of asphaltenes[J]. Liquid Fuels Technology, 2001,19:219. | 15 | Zhang L Q, Greenfield M L . Final report-developing model ashpalt systems using molecular simulation[R]. Rhode Island:University of Rhode Island, 2009. | 16 | Jian C, Tang T, Bhattacharjee S . Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations[J]. Energy Fuels, 2013,27:2057. | 17 | Yao H, Dai Q, You Z . Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydra-ted lime modified asphalt mixtures[J]. Construction & Building Materials, 2015,101(1):536. | 18 | Pomerantz A E, Seifert D J, Bake K D , et al. Sulfur chemistry of asphaltenes from a highly compositionally graded oil column[J]. Energy Fuels, 2013,27:4604. | 19 | Zuo J Y, Mullins O C, Freed D , et al. Advances in the Flory-Huggins-Zuo equation of state for asphaltene gradients and formation evaluation[J]. Energy Fuels, 2013,27:1722. | 20 | Pomerantz A E, Mullins O C, Paul G , et al. Orbitrap mass spectrometry: A proposal for routine analysis of nonvolatile components of petroleum[J]. Energy Fuels, 2011,25:3077. | 21 | Takanohashi T, Sato S, Saito I , et al. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates[J]. Energy Fuels, 2003,17:135. | 22 | Lowden L J, Chandler D . Theory of inter-molecular pair correlations for molecular liquids. Applications to the liquids carbon tetrachloride, carbon disulfide, carbon diselenide, and benzene[J]. Chem-Inform, 1975,6(13):5228. | 23 | Evans D J, Watts R O . On the structure of liquid benzene[J]. Molecular Physics, 1976,32:93. | 24 | Brandt H C A, Hendriks E M, Michels M A J , et al. Thermodynamic modeling of asphaltene stacking[J]. The Journal of Physical Chemistry, 1995,99:10430. | 25 | Pacheco-Sánchez J H, Zaragoza I P, Martínez-Magadán J M . Asphaltene aggregation under vacuum at different temperatures by molecular dynamics[J]. Energy Fuels, 2003,17:1346. | 26 | Forte E, Taylor S E . Thermodynamic modelling of asphaltene precipitation and related phenomena[J]. Advance Colloid Interface, 2011,12:621. | 27 | Mullins O C . The modified yen model[J]. Energy Fuels, 2010,24:179. | 28 | Mullins O C, Sheu E Y. Structures and dynamics of asphaltenes[M]. New York: Plenum Press, 1998. | 29 | Mullins O C, Sheu E Y, Hammami A , et al. Asphaltenes, heavy oils, and petroleomics[M]. New York:Springer, 2007. | 30 | Mullins O C, Sabbah H, Eyssautier J , et al. Advances in asphaltene science and the yen-mullins model[J]. Energy Fuels, 2012,26:3986. | 31 | Rogel E, Carbognani L . Density estimation of asphaltenes using molecular dynamics simulations[J]. Energy Fuels, 2003,17:378. | 32 | Siskin M, Kelemen S R, Eppig C P , et al. Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking[J]. Energy Fuels, 2006,20:1227. | 33 | Carauta A N M, Correia J C G, Seidl P R , et al. Conformational search and dimerization study of average structures of asphaltenes[J]. Journal of Molecular Structure Theochem, 2005,755:1. | 34 | Kuznicki T, Masliyah J H . Aggregation and partitioning of model asphaltenes at toluene-water interfaces: Molecular dynamics simulations[J]. Energy Fuels, 2009,10:5027. | 35 | Kowalewski I, Vandenbroucke M, Huc A Y , et al. Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs[J]. Energy Fuels, 1996,10:97. | 36 | Artok L Y, Su Y . Structure and Reactivity of petroleum derived asphaltene[J]. Energy Fuels, 1999,3:287. | 37 | Trauth D M . Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling[J]. Energy Fuels, 1994,54:576. | 38 | Polacco G, Stastna J, Biondi D , et al. Rheology of asphalts modified with glycidylmethacrylate functionalized polymers[J]. Journal of Colloid & Interface Science, 2004,280:366. | 39 | Ouyang C, Wang S, Zhang Y , et al. Thermo-rheological properties and storage stability of SEBS/kaolinite clay compound modified asphalts[J]. European Polymer Journal, 2006,42:446. | 40 | Jennings P W, Pribanic J A, Desando M A , et al. Binder characte-rization and evaluation by nuclear magnetic resonance spectroscopy[M]. Washington,DC:Strategic Highway Research Program,National Research Council, 1993. | 41 | Bhasin A, Bommavaram R, Greenfield M , et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2010,23:485. | 42 | Cong Y F, Liao K J, Zhai Y C . Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering, 2005,56(5):769(in Chinese). | 42 | 丛玉凤, 廖克俭, 翟玉春 . 分子模拟在SBS改性沥青中的应用[J]. 化工学报, 2005,56(5):769. | 43 | Zhang L, Greenfield M L . Rotational relaxation times of individual compounds with simulations of molecular asphalt models[J]. The Journal of Chemical Physics, 2010,18:4502. | 44 | Alvarez-Ramirez F, Ramirez-Jaramillo E . Calculation of the interaction potential curve between asphaltene-asphaltene, asphaltene-resin, and resin-resin systems using density functional theory[J]. Academic Radiology, 2006,5(9):S432. | 45 | Zhou X, Wu S, Liu G , et al. Molecular simulations and experimental evaluation on the curing of epoxy bitumen[J]. Materials & Structures, 2016,49:241. | 46 | Stoyanov S R, Gusarov S . Multiscale modelling of asphaltene dis-aggregation[J]. Molecular Simulation, 2008,34(10-15):953. | 47 | Stoyanov S R, Gusarov S . Modelling of bitumen fragment adsorption on Cu + and Ag + exchanged zeolite nanoparticles [J]. Molecular Simulation, 2008,34(10-15):943. | 48 | Schmets A J , et al. First-principles investigation of the multiple phases in bituminous materials: The case of asphaltene stacking[M]. Leiden, NL:CRC Press, 2009. | 49 | Ruiz-Morales Y, Mullins O C . Polycyclic aromatic hydrocarbons of asphaltenes analyzed by molecular orbital calculations with optical spectroscopy[J]. Energy Fuels, 2007,21:256. | 50 | Ruiz-Morales Y, Wu X, Mullins O C . Electronic absorption edge of crude oils and asphaltenes analyzed by molecular orbital calculations with optical spectroscopy[J]. Energy Fuels, 2007,21:944. | 51 | Pan T . A first-principles based chemophysical environment for studying lignins as an asphalt antioxidant[J]. Construction & Building Materials, 2012,36:654. | 52 | Carauta A N M, Seidl P R , Chrisman E C A N, et al. Modeling solvent effects on asphaltene dimers[J]. Energy Fuels, 2005,19:1245. | 53 | Neurock M, Klein M T . Chapter 4 Monte Carlo simulation of asphaltene structure, reactivity and reaction pathways[M] ∥Deve-lopments in Petroleum Science. Elsevier Science & Technology, 2000: 59. | 54 | Boek E S, Wilson A D, Padding J T , et al. Multi-scale simulation and experimental studies of asphaltene aggregation and deposition in capillary flow[J]. Energy Fuels, 2010,24:2361. | 55 | Sun B, Zhou X X . Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood[J]. Journal of Materials in Civil Engineering, 2018,30(2):1. | 56 | Lu Y, Wang L. Molecular dynamics simulation to characterize asphalt-aggregate interfaces[M]. Frost, ed.IOS Press, 2010. | 57 | Lu Y, Wang L . Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010,11:393. | 58 | Headen T F, Boek E S . Potential of mean force calculation from molecular dynamics simulation of asphaltene molecules on a calcite surface[J]. Energy Fuels, 2010,24:499. | 59 | Robertson R E, Branthaver J F, Harnsberger P M , et al. Fundamental properties of asphalts and modified asphalts, Volume 1: Interpretive report[J]. Asphalt, 2001,32:99. | 60 | Tarefder R A, Arisa I . Molecular dynamic simulations for determining change in thermodynamic properties of asphaltene and resin because of aging[J]. Energy Fuels, 2011,25:2211. | 61 | Zhou X, Zhang X, Xu S . Evaluation of thermo-mechanical properties of graphene/carbon-nanotubes modified asphalt with molecular si-mulation[J]. Molecular Simulation, 2017,43:312. | 62 | Jeyranpour F, Alahyarizadeh G, Minuchehr H . The Thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation—A comparative study[J]. Polymer, 2016,88:9. | 63 | Zhao Z, Wu S, Zhou X . Molecular simulations of properties changes on nano-layered double hydroxides modified bitumen[J]. Materials Research Innovations, 2015,19:971. | 64 | Mahdizadeh S J, Goharshadi E K, Akhlamadi G . Thermo-mechanical properties of boron nitride nanoribbons: A molecular dynamics simulation study[J]. Journal of Molecular Graphics & Modelling, 2016,68:1. | 65 | Xu P . Interface behaviors of asphalt and aggregates based on molecule dynamic simulations[D]. Xi’an:Chang’an University, 2013(in Chinese). | 65 | 徐霈 . 基于分子动力学的沥青与集料界面行为虚拟实验研究[D]. 西安:长安大学, 2013. | 66 | Wu S, Mo L, Shui Z , et al. Investigation of the conductivity of asphalt concrete containing conductive fillers[J]. Carbon, 2005,43(7):1358. | 67 | Zhou Y, Li P L . Research on asphalt self-healing property based on molecular modeling technique[J]. Shanxi Architecture, 2013,39(6):83(in Chinese). | 67 | 周艳, 李佩林 . 基于分子模拟技术的沥青自愈合性能研究[J]. 山西建筑, 2013,39(6):83. | 68 | Sun D, Lin T, Zhu X , et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt bin-ders[J]. Computational Materials Science, 2016,114:86. | 69 | John A. Dean M T. Lange’s Handbook of Chemistry[M]. New York:McGraw-Hill, 1985. | 70 | Ding Y J . Study on chemical structure characteristic of asphalt using molecular simulation[D]. Chongqing:Chongqing Jiaotong University, 2013(in Chinese). | 70 | 丁勇杰 . 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆:重庆交通大学, 2013. | 71 | Muller-Plathe F . Scale-hopping in computer simulations of polymers[J]. Soft Materials, 2003,1:1. | 72 | Murgich J . Molecular simulation and the aggregation of the heavy fractions in crude oils[J]. Molecular Simulation, 2003,29:451. | 73 | Aguilera-Mercado B, Herdes C, Murgich J , et al. Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils[J]. Energy Fuels, 2006,20:327. | 74 | Cui S T, Cummings P T, Cochran H D . The calculation of viscosity of liquid n-decane and n-hexadecane by the Green-Kubo method[J]. Molecular Physics, 1998,93:117. | 75 | Gordon P A . Characterizing isoparaffin transport properties with Stokes-Einstein relationships[J]. Industrial & Engineering Chemistry Research, 2003,42:7025. | 76 | Mondello M, Grest G S . Viscosity calculations of n-alkanes by equilibrium molecular dynamics[J]. Journal of Chemical Physics, 1997,106:9327. | 77 | Vicente L, Soto C, Pacheco-Snchez H , et al. Application of molecular simulation to calculate miscibility of a model asphaltene molecule[J]. Fluid Phase Equilibria, 2006,239:100. | 78 | Hildebrand J, Scott R L . The solubility of nonelectrolytes[M]. Third ed. New York: Reinhold, 1950. | 79 | Hansen C M. Hansen solubility parameters-A user’s handbook[M]. Boca Raton: CRC Press, 2000. | 80 | Hansen C M . Aspects of solubility, surfaces, and diffusion in polymers[J]. Progress in Organic Coatings, 2004,1:55. | 81 | Hansen C M, Smith A L . Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers[J]. Carbon, 2004,42:1591. | 82 | Hansen C M . 50 Years with solubility parameters-past and future[J]. Progress in Organic Coatings, 2004,51(1):77. | 83 | Barton A F M . Solubility parameters[J]. Chemical Reviews, 1975,75:731. | 84 | Wang S J, Zheng Y C, Ding Y J . Based on molecular simulation and evaluation on solubility of mono connected SBS and asphalt[J].Highways and Automotive Applications, 2013(1):100(in Chinese). | 84 | 王淑娟, 郑永昌, 丁勇杰 . 基于分子模拟技术的单体接枝SBS与沥青相容性研究[J].公路与汽运, 2013(1):100. | 85 | Cui S T, Cummings P T, Cochran H D . Multiple time step non-equilibrium molecular dynamics simulation of the rheological properties of liquid n-decane[J]. The Journal of Chemical Physics, 1996,104(1):255. | 86 | Sun B, Zhou X X . Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood[J]. Journal of Materials in Civil Engineering, 2017,119:1. |
|
|
|
|