REVIEW PAPER |
|
|
|
|
|
Research Status of Plasticity and Toughness of Bulk Metallic Glass |
Yanchun ZHAO1,2,Congyu XU1,Xiaopeng YUAN1,Jing HE1,Shengzhong KOU1,2,Chunyan LI1,2,Zizhou YUAN1,2
|
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology,Lanzhou 730050 2 College of Material Science and Technology, Lanzhou University of Technology, Lanzhou 730050 |
|
|
Abstract How to enhance room-temperature plasticity and toughness have been obstacles for advanced functional structural applications of bulk amorphous alloy. Understanding of the plastic deformation mechanism under loading at room temperature is a precondition for plasticity and toughness improvements. Formation and propagation of highly localized shear bands produce the plastic deformation of bulk amorphous alloy. And to increase the room temperature plasticity depends on how to make the uniform distribution of the shear band. A thorough and detailed research in the field have been done and obtained different methods for plasticity and toughness improvements, such as shot peening, high Poisson’s ratio of amorphous alloy system design, as cast phase-separated amorphous alloy system with microstructural fluctuation, introduction of crystalline phase, and so on. In this paper, the research hot spot, the plastic toughness criterion, the method of finding the formation and expansion of the block amorphous alloys are reviewed from six aspects, that is, the second phase toughened amorphous matrix composites, Poisson’s ratio criterion, size effect, surface modifications, preforming multiple shear bands improves preform plasticity, and thermal cycling induced rejuvenation, etc. The paper also points out that to obtain excellent tensile ductility and fracture toughness, is the research object and important development direction of different amorphous alloy systems, and promotes the application and industrialization of bulk amorphous alloy as a new type of functional structural material.
|
Published: 10 February 2018
|
|
|
|
|
样品尺寸对塑性应变的影响[29]
|
|
样品尺寸对塑性应变的影响[29]
|
|
Zr62Cu24Fe5Al9不同尺寸试样经热循环处理后的压缩塑性[50]
|
|
Zr62Cu24Fe5Al9不同尺寸试样经热循环处理后的压缩塑性[50]
|
1 | Telford M . The case for bulk metallic glass[J]. Materials Today, 2004,7(3):36. | 2 | Wang J, Li R, Hua N, Zhang T . Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity[J]. Journal of Mate-rials Research, 2011,26:2072. | 3 | Wang W H . The nature and properties of amorphous matter[J]. Progress in Physics, 2013,33(5):177(in Chinese). | 3 | 汪卫华 . 非晶态物质的本质和特性[J]. 物理学进展, 2013,33(5):177. | 4 | Wang W H . The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Progress in Materials Science, 2012,57:487. | 5 | Cao Q P, Liu J W, Yang K J , et al. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass[J]. Acta Materialia, 2010,56:1276. | 6 | Liu Y H, Wang G, Wang R J , et al. Super plastic bulk metallic glasses at room temperature[J]. Science, 2007,315:1385. | 7 | Chen L Y, Fu Z D, Zhang G Q , et al. New class of plastic bulk metallic glass[J]. Physical Review Letters, 2008,100(7):075501. | 8 | Zhang H F, Li H, Wang A M , et al. Synjournal and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite[J]. Intermetallics, 2009,17(12):1070. | 9 | Chen G, Bei H, Cao Y, Toyoda Y . Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases[J]. Applied Physics Letters, 2009,95:081908. | 10 | Bian X L, Li J, Wang G . Intermittent plastic flow of Mg-based metallic glass under nanoindentation[J]. Materials China, 2014,33(5):265(in Chinese). | 10 | 卞西磊, 李洁, 王刚 . 纳米压入下镁基非晶合金的间歇性塑性流动[J]. 中国材料进展, 2014,33(5):265. | 11 | Eckert J, Das J, Pauly S , et al. Mechanical properties of bulk metallic glasses and composites[J]. Journal of Materials Research, 2007,22(2):285. | 12 | Chen M W . Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility[J]. Annual Review of Mate-rials Research, 2008,38:445. | 13 | Schuh C A, Hufnagel T C, Ramamurty U . Mechanical behavior of amorphous alloys[J]. Acta Materialia, 2007,55(12):4067. | 14 | Yuan X P, Kou S Z, Zhao Y C , et al. Microstructure and mechanical properties of (Cu0.7Fe0.3)88-xAl12Zrx by semi-solid processing[J]. Chinese Journal of Rare Metals, 2014,38(6):1011(in Chinese). | 14 | 袁小鹏, 寇生中, 赵燕春 , 等. 半固态处理对(Cu0.7Fe0.3)88-xAl12-Zrx非晶复合材料组织和力学性能的影响[J]. 稀有金属, 2014,38(6):1011. | 15 | Qiao J, Jia H, Liaw P K . Metallic glass matrix composites[J]. Materials Science and Engineering R:Reports, 2016,100:1. | 16 | Eckert J, Das J, Pauly S , et al. Processing routes, microstructure and mechanical properties of metallic glasses and their composites[J]. Advanced Engineering Materials, 2007,9(2):443. | 17 | Hays C C, Kim C P, Johnson W L . Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersion[J]. Physical Review Letters, 2000,84(13):2901. | 18 | Hofmann D C, Suh J Y, Wiest A , et al. Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008,451(28):1085. | 19 | Das J, Tang M B, Wang W H , et al. “Work-hardenable” ductile bulk metallic glass[J]. Physical Review Letters, 2005,94:205501. | 20 | Wu Y, Xiao Y H, Chen G L , et al. Bulk metallic glass composite with transformation-mediated work-hardening and ductility[J]. Advanced Materials, 2010,22(25):2770. | 21 | Wu Y, Wang H, Wu H H , et al. Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties[J]. Acta Materialia, 2011,59:2928. | 22 | Gargarella P, Pauly S, Song K K , et al. Ti-Cu-Ni shape memory bulk metallic glass composites[J]. Acta Materialia, 2013,61:151. | 23 | Churyumov A Y, Bazlov A I, Solonin A N , et al. Structure and mechanical properties of Ni-Cu-Ti-Zr composite materials with amorphous phase[J]. Physics of Metals and Metallography, 2013,114(9):773. | 24 | Chen H S, Krause J T, Coleman E . Elastic constants, hardness and their implications to flow properties of metallic glasses[J]. Journal of Non-Crystalline Solids, 1975,18(2):157. | 25 | Zhang Y , Greer A L. Correlations for predicting plasticity or brittleness of metallic glasses[J].Journal of Alloys and Compounds, 2007, 434- 435:2. | 26 | Wang W H . Family traits[J]. Nature Materials, 2012,11:275. | 27 | Wang W H . Correlation between relaxation and deformation in metallic glasses[J]. Journal of Applied Physics, 2011,110:053521. | 28 | Simon Pauly, Jayanta Das, Cécile Duhamel , et al. Martensite formation in a ductile Cu47.5Zr47.5Al5 bulk metallic glass composite[J]. Advanced Engineering Materials, 2007,9(6):487. | 29 | Conner R D, Li Y, Nix W D , et al. Shear band spacing under bending of Zr-based metallic glass plates[J]. Acta Materialia, 2004,52(8):2429. | 30 | Conner R D, Johnson W L, Paton N E , et al. Shear bands and crac-king of metallic glass plates in bending[J]. Journal of Applied Physics, 2003,94(2):904. | 31 | Guo H, Yan P F, Wang Y B , et al. Tensile ductility and necking of metallic glass[J]. Nature Materials, 2007,6(10):735. | 32 | Liu Na, Cai Hongnian, Wang Lu , et al. Behavior of multiple shear bands in Zr-based bulk metallic glass under quasi-static compressive loading[J].Transactions of Beijing Institute of Technology,2006(10):916(in Chinese). | 32 | 刘娜, 才鸿年, 王鲁 , 等. Zr基非晶合金准静态压缩下的多重剪切带行为[J].北京理工大学学报,2006(10):916. | 33 | Hufnagel T C, Schuh C A, Falk M L . Deformation of metallic glasses: Recent developments in theory, simulations, and experiments[J]. Acta Materialia, 2016,109:375. | 34 | Yang G N, Shao Y, Yao K F . The shear band controlled deformation in metallic glass: A perspective from fracture[J]. Scientific Reports, 2016,6:21852. | 35 | Lee M H . Deformation-induced microstructural heterogeneity in monolithic Zr44Ti11Cu9.8 Ni10.2Be25 bulk metallic glass[J]. Physica Status Solidi-Rapid Research Letters, 2009,3(2-3):46. | 36 | Yokoyama Y . Ductility improvement of Zr-Cu-Ni-Al glassy alloy[J]. Journal of Non-Crystalline Solids, 2003,316(1):104. | 37 | Wang J G, Zhao D Q, Pan M X , et al. Mechanical heterogeneity and mechanism of plasticity in metallic glasses[J]. Applied Physics Letters, 2009,94(3):31904. | 38 | Chen M, Inoue A, Zhang W , et al. Extraordinary plasticity of ductile bulk metallic glasses[J]. Physical Review Letters, 2006,96(24):245502. | 39 | Boucharat N, Hebert R, Rosner H , et al. Nanocrystallization of amorphous Al88Y7Fe5 alloy induced by plastic deformation[J]. Scripta Materialia, 2005,53(7):823. | 40 | Lee J C . Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite[J]. Acta Materialia, 2004,52(6):1525. | 41 | Lee S W, Huh M Y, Fleury E , et al. Crystallization-induced plasti-city of Cu-Zr containing bulk amorphous alloys[J]. Acta Materialia, 2006,54(2):349. | 42 | Lee S W, Huh M Y, Chae S W , et al. Mechanism of the deformationinduced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression[J]. Scripta Materialia, 2006,54(8):1439. | 43 | Lee J C, Kim Y C, Ahn J P , et al. Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies[J]. Acta Materialia, 2005,53(1):129. | 44 | Zhang Y, Wang W H, Greer A L . Makingmetallic glasses plastic by control of residual stress[J]. Nature Materials, 2006,5:857. | 45 | Qiu S B, Yao K F . Novel application of the electrodeposition on bulk metallic glasses[J]. Applied Surface Science, 2008,255(5):3454. | 46 | Chen W, Chan K C, Yu P , et al. Encapsulated Zr-based bulk metallic glass with large plasticity[J]. Materials Science and Engineering:A, 2011,528(6):2988. | 47 | Nieh T G, Yang Y, Lu J , et al. Effect of surface modifications on shear banding and plasticity in metallic glasses: An overview[J]. Progress in Natural Science: Materials International, 2012,22(5):355. | 48 | Meng M M, Gao Z P, Ren L W , et al. Improved plasticity of bulk metallic glasses by electrode position[J]. Materials Science and Engineering:A, 2014,615:240. | 49 | Ren L W, Yang F Q, Jiao Z M , et al. Plasticity enhancement in Ni-P amorphous alloy/Ni/Zr-based metallic glass composites with a sandwich structure[J]. Materials Science and Engineering:A, 2015,643:175. | 50 | Ketov S V, Sun Y H, Nachum S , et al. Rejuvenation of metallic glasses by non-affine thermal strain[J]. Nature, 2015,524(7564):200. |
|
|
|
|