REVIEW PAPER |
|
|
|
|
|
Research Progress of Zinc Ferrite as Photocatalyst |
Guiqin HOU1,2( ),Yunkai LI1,Xiaoyan WANG2
|
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 2 Qing Gong College, North China University of Science and Technology, Tangshan 063000 |
|
|
Abstract Zinc ferrite is a n-type semiconductor with high photocatalytic activity and visible light sensitive, the unique magnetic properties and chemical stability make it widely used in the field of photocatalysis. For various morphology of zinc ferrite, different modification methods can be taken to make it more efficient and practical. In recent years, taking advantage of the zinc ferrite characteristics, the preparation of magnetic recovery and stable performance of the composite photocatalyst has attracted the attention of researchers. In this paper, the basic properties of zinc ferrite as photocatalyst and the preparation methods of various morphology are introduced. The modification technology and modification mechanism of zinc ferrite in photocatalysis are discussed. At the same time, the existing problems and prospects are pointed out.
|
Published: 10 January 2018
Online: 2018-01-10
|
|
|
|
|
(a) Crystal structure of ZnFe2O4, (b) tetrahedron and (c) eight planes of oxygen ion
|
|
Schematic diagram showing photochemical catalysis of ZnFe2O4
|
|
TEM and HRTEM images of ZnFe2O4 prepared by solution combustion method
|
|
(a) Hysteresis loop of ZnFe2O4 nanorods and (b) transmission structure of porous ZnFe2O4 nanorods
|
|
SEM diagram of (a)flower and (b)flake ZnFe2O4
|
|
SEM images of ZnFe2O4: (a) nanowires,(b) nanotubes
|
|
Preparation and formation mechanism of hollow ZnFe2O4 microspheres
|
Morphologies | Preparation method | Catalyst dosage | Degradation dyes | Degradation time | Photocatalytic activity | Bulk | Solution combustion synthesis | 0.1 g, 21.9 nm | 100 mL, 10 mg/L RhB | 300 W, Xe lamp,2 h | 61.3% | Porous nanorods | Template-surfactant-free solvothermal method | 100 mg, diameters of 100— 200 nm and lengths of several micrometers | 100 mL, 5 mg/L MB | Sunlight,April, 10∶00—16∶00 | 85% | Floriated | Mild hydrothermal and calcination processes by using CTABr as a template-directing reagent | 100 mg, average length of 122 nm and diameter of 29 nm | 80 mL water and 20 mL methanol | 250 W, Xe lamp, 5 h | 237.87(mmol·g)/L | Flaky | Mild hydrothermal and calcination processes | 100 mg | 80 mL water and 20 mL methanol | 250 W, Xe lamp, 5 h | 87.40(mmol·g)/L | Nanotube | Anodic aluminum oxide templates from sol-gel solution | Average diameter of approximately 200 nm | 100 mL, 10 mg/L, 4-CP | 500 W, Xe lamp, 6 h | 100% |
|
Preparation methods and photocatalytic activity of of ZnFe2O4 with different morphology
|
|
Coupling of different semiconductor photocatalysts under illumination
|
[1] | Doh S J, Kim C, Lee S G , et al. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants[J]. Journal of Hazardous Materials, 2008,154(1-3):118. | [2] | Kyung H, Lee J . Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination[J]. Environmental Science and Technology, 2005,39:2376. | [3] | Liu Z Y, Bai H W, Sun D R . Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification[J]. Applied Catalysis B: Environmental, 2011,104(3-4):234. | [4] | Mady A H, Baynosa M L, Tumac D , et al. Facile microwave-assisted green synjournal of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV-and visible-light irradiation[J]. Applied Catalysis B: Environmental, 2017,203:416. | [5] | Wang J N, Yang G R, Wang L , et al. Fabrication of the ZnFe2O4 fiber-in-tube and tubular meso porous nanostructures via single-spinneret electrospinning: Characterization, mechanism and performance as anodes for Li-ion batteries[J]. Electrochimica Acta, 2016,222:1176. | [6] | Nambissan P M G, Upadhyay C, Verma H C . Positron lifetime spectroscopy studies of nanocrystalline ZnFe2O4[J]. Journal of Applied Physics, 2003,93(10):6320. | [7] | Li Z H, Zou X, Li G . Preparation and photovoltaic properties of p-type nano-ZnFe2O4[J]. Journal of Chemical Research in Chinese Universities, 2012,28(4):712. | [8] | Rahman M M, Khana S B, Faisal M, et al. Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods[J]. Sensors and Actuators B: Chemical , 2012, 171- 172:932. | [9] | Shim J H, Lee S, Park J H , et al. Coexistence of ferrimagnetic and antiferromagnetic ordering in Fe-inverted zinc ferrite investigated by NMR[J]. Physical Review B, 2006,73(6):064404. | [10] | LiuH, Wei Y, Zhang Y F , et al. Study on the preparation of nanometer zinc ferrite Journal of Inorganic Materials, 2002,17(1):56(in Chinese). | [10] | 刘辉, 魏雨, 张艳峰 , 等. 纳米铁酸锌的制备研究[J]. 无机材料学报, 2002,17(1):56. | [11] | ZhuM Y, Liu H, Wei Y . Preparation of nano scale zinc ferrite by hydrogen peroxide and its properties Inorganic Chemicals Industry, 2007,39(8):19(in Chinese). | [11] | 朱梅英, 刘辉, 魏雨 . 由氢氧化氧铁制备纳米级铁酸锌及产物性质研究[J]. 无机盐工业, 2007,39(8):19. | [12] | ZhanS H, Gong C R, Chen D R , et al. Preparation of ZnFe2O4 nanofibers by sol-gel related electrospinning method[J]. Journal of Dispersion Science and Technology, 2006,27(7):931. | [13] | ChenX J, Dai Y Z, Huang W K . Novel Ag3PO4/ZnFe2O4 composite photocatalyst with enhanced visible light photocatalytic activity[J]. Materials Letters, 2015,145:125. | [14] | SeisukeN, Koji F, Katsuhisa T , et al. High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film[J]. Journal of Physics: Condensed Matter, 2005,17(1):137. | [15] | KazantsevaN E, Bespyatykh Y I, Sapurina I , et al. Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating[J]. Journal of Magnetism and Magnetic Materials, 2006,301(1):155. | [16] | YangJ L, Xu M, Luo M X , et al. Research of preparation zinc ferrite from leaching zinc calcine[J].Multipurpose Utilization of Mineral Resources, 2017(1):97(in Chinese). | [16] | 杨金林, 徐明, 罗美秀 , 等. 锌焙砂浸出制备铁酸锌研究[J]. 矿产综合利用, 2017(1):97. | [17] | XuQ Q, Feng J T, Li L C . Hollow ZnFe2O4/TiO2 composites: High-performance and recyclable visible-light photocatalyst[J]. Journal of Alloys and Compounds, 2015,641:110. | [18] | WangY N, Weng D H, Fang T , et al. Research progress on nanometer zinc ferrite photocatalytic degradation of industrial wastewater Guangzhou Chemical Industry, 2017,45(6):17(in Chinese). | [18] | 王雅楠, 翁德辉, 方涛 , 等. 纳米铁酸锌光催化降解工业废水研究进展[J]. 广州化工, 2017,45(6):17. | [19] | GaoH R, Song S T . Preparation of sol-gel and its photocatalytic properties of zinc ferrite Journal of Hebei Normal University of Science and Technology, 2014,28(2):69(in Chinese). | [19] | 高贺然, 宋士涛 . 铁酸锌的凝胶-溶胶制备及其光催化性能[J]. 河北科技师范学院学报, 2014,28(2):69. | [20] | LiF T, Li Y L, Liu R H . Rapid combustion synjournal of ZnFe2O4 and its photocatalytic activity synjournal experimental design Experimental Technology and Management, 2016,33(5):28(in Chinese). | [20] | 李发堂, 李义磊, 刘瑞红 . 纳米ZnFe2O4快速燃烧合成及其光催化活性综合实验设计[J]. 实验技术与管理, 2016,33(5):28. | [21] | CaiC, Zhang Z Y, Liu J , et al. Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange Ⅱ in water[J]. Applied Catalysis B: Environmental , 2016,182:456. | [22] | HabibiM H, Habibi A H, Zendehdel M , et al. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: Effect of composite precursors and titania as a blocking layer on photovoltaic performance[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013,110:226. | [23] | TabariT, Singh D, Jamali S S . Enhanced photocatalytic activity of mesoporous ZnFe2O4 nanoparticles towards gaseous benzene under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2017,5:931. | [24] | SunB, Zhang X, Zhou G D , et al. Effect of Cu ions assisted conductive filament on resistive switching memory behaviors in ZnFe2O4-based devices[J]. Journal of Alloys and Compounds, 2017,694:464. | [25] | ZhouY W, Fang S S, Zhou M , et al. Fabrication of novel ZnFe2O4/BiOI nanocomposites and its efficient photocatalytic activity under visible-light irradiation[J]. Journal of Alloys and Compounds, 2017,696:353. | [26] | 26Abu-Hani A F, Mahmoud S T, Awwad F , et al. Design fabrication, and characterization of portable gas sensors basedon spinel ferrite nanoparticles embedded in organic membranes[J]. Sensors and Actuators B, 2017,241:1179. | [27] | ZamiriR, Salehizadeh S A, Ahangar H A , et al. Optical and magnetic properties of ZnO/ZnFe2O4 nanocomposite[J]. Materials Chemistry and Physics, 2017,192:330. | [28] | SongZ W, Li X Y, Wu X L . Synjournal and characterization of strontium titanate nanocrystalline photocatalysts Experimental Technology and Management, 2013,30(9):47(in Chinese). | [28] | 宋祖伟, 李旭云, 吴秀玲 . 钛酸锶纳米晶光催化剂合成及表征综合实验设计[J]. 实验技术与管理, 2013,30(9):47. | [29] | SuX T, Yan Q Z, Ge C C . A new study on the synjournal of ultrafine ceramic powders by low temperature combustion Progress in Chemistry, 2005,17(3):430(in Chinese). | [29] | 宿新泰, 燕青芝, 葛昌纯 . 低温燃烧合成超细陶瓷微粉的最新研究[J]. 化学进展, 2005,17(3):430. | [30] | LiF T, Ran J R, Jaroniec M , et al. Solution combustion synjournal of metal oxide nanomaterials for energy storage and conversion[J]. Nanoscale, 2015,7:17590. | [31] | WeiZ Q, Zhang L L, Zhang G , et al. Preparation and properties of ZnFe2O4 nanorods Journal of Synthetic Crystals, 2014,43(4):820(in Chinese). | [31] | 魏智强, 张玲玲, 张歌 , 等. ZnFe2O4纳米棒的制备和性能研究[J]. 人工晶体学报, 2014,43(4):820. | [32] | JiaZ G, Ren D P, Liang Y C , et al. A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity[J]. Materials Letters, 2011,65:3116. | [33] | LvH J, Ma L, Zeng P , et al. Synjournal of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light[J]. Journal of Materials Chemistry, 2010,20:3665. | [34] | GaoD Q, Shi Z H, Xu Y , et al. Synjournal, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays[J]. Nanoscale Research Letters, 2010,5:1289. | [35] | LiX Y, Hou Y, Zhao Q D , et al. Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol[J]. Chemosphere, 2011,82:581. | [36] | ZhangJ, Zhang L X . Photocatalytic properties and preparation of hollow zinc ferrite nano materials Modern Chemical Industry, 2015,35(2):91(in Chinese). | [36] | 张嘉, 张立新 . 中空铁酸锌纳米材料的制备及其光催化性能[J]. 现代化工, 2015,35(2):91. | [37] | ChenX J, Dai Y Z, Liu T H , et al. Magnetic core-shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2015,409:198. | [38] | LuF, Meng F M . Research evolution of doping modification on TiO2 photocatalyst Bulletin of the Chinese Ceramic Society, 2011,30(1):116(in Chinese). | [38] | 鲁飞, 孟凡明 . TiO2光催化剂掺杂改性研究进展[J]. 硅酸盐通报, 2011,30(1):116. | [39] | NuLiY N, Chu Y Q, Qin Q Z . Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2003,151(7):A1077. | [40] | JiangY, Song W L, Xie C S , et al. Preparation and gas sensitivity of V doped ZnFe2O4 nanoparticles Rare Metal Materials and Engineering, 2006,35(4):617(in Chinese). | [40] | 蒋勇, 宋武林, 谢长生 , 等. V掺杂纳米ZnFe2O4的制备及气敏性研究[J]. 稀有金属材料与工程, 2006,35(4):617. | [41] | ChenT. Study on synthesizing and characterizing of zic ferrite nanoparticles[D]. Suzhou: Soochow University, 2012(in Chinese). | [41] | 陈婷立 . 纳米铁酸锌(ZnFe2O4)的制备及其性能的研究[D]. 苏州:苏州大学, 2012. | [42] | ZawarS, Atiq S, Riaz S , et al. Correlation between particle size and magnetic characteristics of Mn-substituted ZnFe2O4 ferrites[J]. Superlattices and Microstructures, 2016,93:50. | [43] | LinJ, Jia Z B, Weng C D . Dispersion of nano-zinc ferrite Guangdong Chemical Industry, 2012,39(4):68(in Chinese). | [43] | 林健, 贾振斌, 翁创达 . 纳米铁酸锌的分散[J]. 广东化工, 2012,39(4):68. | [44] | XiaoX X, He Q Q, Cai J W , et al. Surface modification of nano zinc ferrite (ZnFe2O4) Fine Chemical Intermediates, 2007,37(3):51(in Chinese). | [44] | 肖旭贤, 何琼琼, 蔡婧文 , 等. 纳米铁酸锌(ZnFe2O4)的表面改性[J]. 精细化工中间体, 2007,37(3):51. | [45] | 王梦晔, 蔡建怀, 孙岚 , 等. ZnFe2O4修饰的TiO2纳米管阵列电极的制备及光催化性能[C]∥ 第十三届全国太阳能化学与光催化学术会议. 武汉, 2012. | [46] | ShahidAmeer, Iftikhar Hussain Gul, Nasir Mahmood , et al. Synjournal, characterization and optical properties of in situ ZnFe2O4 functionalized rGO nano hybrids through modified solvothermal approach[J]. Optical Materials, 2015,45:69. | [47] | FengJ, Wang Y T, Zou L Y , et al. Synjournal of magnetic ZnO/ZnFe2O4 by a microwave combustion method, and its high rate of adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2015,438:318. | [48] | QiS Y, Zhao B C, Wu C , et al. Investigation on the preparation and photocatalytic properties study of ZnO/ZnFe2O4 Journal of Harbin University of Science and Technology, 2017,22(2):7(in Chinese). | [48] | 亓淑艳, 赵博超, 吴超 , 等. 复合材料的光催化性能的研究[J]. 哈尔滨理工大学学报, 2017,22(2):7. | [49] | Ran F, Mao W X, Zhao Q Y , et al. Preparation and photocatalytic properties of ZnFe2O4/polyaniline composites Journal of Zhejiang Normal University(Natural Science), 2017,40(1):64(in Chinese). | [49] | 冉方, 冒卫星, 赵巧云 , 等. ZnFe2O4/聚苯胺复合材料的制备及光催化性能[J]. 浙江师范大学学报(自然科学版), 2017,40(1):64. | [50] | KulkarniS D, Kumbar S, Menon S G , et al. Magnetically separable core-shell ZnFe2O4@ZnO nanoparticles for visible light photodeg-radation of methyl orange[J]. Materials Research Bulletin, 2016,77:70. | [51] | HouG Q, Li Y K, An W J , et al. Fabrication and photocatalytic activity of magnetic core@shell ZnFe2O4@Ag3PO4 heterojunction[J]. Materials Science in Semiconductor Processing, 2017,63:261. |
|
|
|
|