Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22080209-6    https://doi.org/10.11896/cldb.22080209
  无机非金属及其复合材料 |
加载次序对沥青混合料疲劳损伤累积的影响
房辰泽1,2, 郭乃胜1, 蒋继望2,3, 冷真2,*, 李辉2,3, 陆国阳2, 王昊鹏4
1 大连海事大学交通运输工程学院,辽宁 大连 116026
2 香港理工大学土木及环境工程学系,香港 九龙 999077
3 东南大学交通学院,南京 21009
4 诺丁汉大学诺丁汉交通工程中心,英国 诺丁汉 NG7 2RD
Effects of Loading Sequence on Fatigue Damage Accumulation of Asphalt Mixture
FANG Chenze1,2, GUO Naisheng1, JIANG Jiwang2,3, LENG Zhen2,*, LI Hui2,3, LU Guoyang2, WANG Haopeng4
1 Department of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
2 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
3 Department of Transportation, Southeast University, Nanjing 210096, China
4 Nottingham Transportation Engineering Centre, University of Nottingham, Nottingham NG7 2RD, UK
下载:  全 文 ( PDF ) ( 8788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青混合料在变幅加载下的疲劳损伤累积过程具有明显的非线性特征,然而传统的线性损伤累积准则无法表征不同加载次序下的非线性疲劳损伤累积(NLFDA)。为研究加载次序对沥青混合料疲劳损伤累积的影响,首先开展恒幅加载疲劳试验,分析恒幅加载下的疲劳损伤累积规律;其次借助变幅加载疲劳试验,分析变幅加载下的疲劳损伤累积规律;最后建立考虑加载次序的NLFDA模型,分析加载次序对沥青混合料疲劳损伤累积的影响。结果表明:恒幅加载下沥青混合料疲劳损伤发生非线性演化,但服从线性损伤累积准则,且累积寿命分数为1;变幅加载会导致疲劳损伤发生非线性演化,且服从非线性损伤累积准则,低-高和高-低加载次序的累积寿命分数分别大于1和小于1;建立的NLFDA模型可较为准确地表征沥青混合料疲劳损伤对加载次序的依赖性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房辰泽
郭乃胜
蒋继望
冷真
李辉
陆国阳
王昊鹏
关键词:  道路工程  疲劳损伤累积  加载次序  沥青混合料    
Abstract: The accumulation process of fatigue damage of asphalt mixture under variable amplitude loading exhibits an obvious nonlinear characteristic. However, the traditional linear damage accumulation criterion fails to characterize the nonlinear fatigue damage accumulation (NLFDA) under different loading sequences. This study aims to investigate the effects of loading sequence on the fatigue damage accumulation of asphalt mixture. First, the fatigue tests with constant amplitude loading were carried out to investigate the fatigue damage accumulation under constant amplitude loading. Then, the SCB fatigue tests with variable amplitude loading were conducted to analyze the fatigue damage accumulation under variable amplitude loading. Finally, the NLFDA model considering the loading sequence was established to analyze the effects of loading sequence on the fatigue damage accumulation of asphalt mixture. It was found that the fatigue damage of asphalt mixture under constant amplitude loading evolved nonlinearly, however, it obeyed linear damage accumulation criterion and the cumulative life fractions are equal to one. The variable amplitude loading can lead to that the fatigue damage evolves nonlinearly and obeys nonlinear damage accumulation criterion, and the cumulative life fractions of the loading sequences of low-high and high-low are greater than one and less than one, respectively. The established NLFDA model can effectively characterize the dependence of the fatigue damage of asphalt mixture on the loading sequence.
Key words:  road engineering    fatigue damage accumulation    loading sequence    asphalt mixture
发布日期:  2023-12-19
ZTFLH:  U414  
基金资助: 国家自然科学基金(52108421;51308084)
通讯作者:  *冷真,香港理工大学土木及环境工程学系终身副教授、博师研究生导师,道路研究所所长,碳中和资源工程研究中心副总监。先后在东南大学取得本科及硕士学位、在美国伊利诺伊大学香槟分校取得博士学位。主要研究方向包括:可持续与智慧铺面材料与技术,及交通基础设施无损检测。已发表SCI期刊论文100余篇。现任美国土木工程师学会大中华分会会长、国际铺面科学与工程学会副主席、国际华人基础设施工作者协会理事、世界交通运输大会沥青路面学科主席、香港交通研究学会理事、及香港公路学会理事;任期刊Journal of Cleaner Materials创刊主编,Journal of Cleaner Production(中科院一区期刊)执行主编,ASCE Journal of Materials in Civil Engineering和 Journal of Transportation Engineering,Part B:Pavements副主编,及其他多个SCI期刊编委。zhen.leng@polyu.edu.hk   
作者简介:  房辰泽,博士研究生,自2019年9月在大连海事大学和香港理工大学攻读博士学位,在郭乃胜教授和冷真教授的指导下进行道路工程领域研究。目前主要研究方向:多尺度下沥青混合料非线性疲劳损伤力学表征,以及路面结构性能预测等研究。截至2023年12月,发表学术论文33篇,其中,以第一作者/导师第一、本人第二作者发表论文15篇(SCI 6篇,EI 5篇),并获辽宁省优秀硕士毕业论文,授权发明专利2项。
引用本文:    
房辰泽, 郭乃胜, 蒋继望, 冷真, 李辉, 陆国阳, 王昊鹏. 加载次序对沥青混合料疲劳损伤累积的影响[J]. 材料导报, 2023, 37(24): 22080209-6.
FANG Chenze, GUO Naisheng, JIANG Jiwang, LENG Zhen, LI Hui, LU Guoyang, WANG Haopeng. Effects of Loading Sequence on Fatigue Damage Accumulation of Asphalt Mixture. Materials Reports, 2023, 37(24): 22080209-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080209  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22080209
1 Zhou X D, Chang C Q, Wang L. Journal of Building Materials, 2020, 23(3), 650 (in Chinese).
周晓东, 常春清, 王岚. 建筑材料学报, 2020, 23(3), 650.
2 Cui Y N, Zhang Q, Zhang X. Journal of Building Materials, 2023, 26(1), 85(in Chinese).
崔亚楠, 张强, 张翔. 建筑材料学报, 2023, 26(1), 85.
3 Fang C Z, Guo N S, You Z P, et al. Construction and Building Materials, 2020, 257, 119476.
4 Zhang J, Wang Y D, Su Y T . Construction and Building Materials, 2019, 218, 712.
5 Fang C Z, Guo N S, Sun Y Z, et al. Engineering Mechanics, 2020, 37 (4), 196 (in Chinese).
房辰泽, 郭乃胜, 孙雅珍, 等. 工程力学, 2020, 37 (4), 204.
6 Zuo F J, Huang H Z, Zhu S P, et al. International Journal of Damage Mechanics, 2015, 24(5), 767.
7 Xu S, Zhu S P, Hao Y Z, et al. Journal of Strain Analysis for Engineering Design, 2018, 53(8), 719.
8 Marco S M, Starkey W L. Transactions of the ASME, 1954, 76(4), 626.
9 Manson S S, Halford G R. NASA Technical Memorandum 81517, 1980, 49.
10 Ye D Y, Wang Z L. International Journal of Fatigue, 2001, 23, 679.
11 Mesmacque G, Garcia S, Amrouche A, et al. International Journal of Fatigue, 2005, 27(4), 461.
12 Kwofie S, Rahbar N. International Journal of Damage Mechanics, 2013, 22(3), 393.
13 Wu Zhiyong. Research on cumulative fatigue damage of asphalt mixture and asphalt layer based on multi-level amplitude loading. Ph. D. Thesis, South China University of Technology, China, 2014 (in Chinese).
吴志勇. 基于多级等幅荷载下的沥青混合料损伤累积和沥青面层疲劳损伤破坏研究. 博士学位论文, 华南理工大学, 2014.
14 Jiang J W, Ni F J, Gao L, et al. Construction and Building Materials, 2016, 122, 254.
15 Cai X, Yang J. Journal of Southeast University (English Edition), 2019, 35(1), 89.
16 Gourab S, Krishna P B. Construction and Building Materials, 2016, 105, 103.
17 Chaboche J L, Lesne P M. Fatigue of Engineering Materials, 1988, 2(1), 1.
18 JTG E20-2011. Standard test methods of bitumen and bituminous mixtures for highway engineering, People’s Communications Press files, China, 2011 (in Chinese).
JTG E20-2011. 公路工程沥青及沥青混合料试验规程, 人民交通出版社, 2011.
19 AASHTO TP124. Standard practice for determining the fracture potential of asphalt mixtures using semicircular bend geometry (SCB) at intermediate temperature, American Association of State Highways and Transportation Officials, 2016.
20 Jiang J W. Investigation of the fatigue property and internal structure of asphalt mixtures based on multiscale methods. Ph. D. Thesis, Southeast University, China, 2019 (in Chinese).
蒋继望. 多尺度视角下沥青混合料疲劳性能及细观结构研究. 博士学位论文, 东南大学, 2019.
21 Li H, Luo X, Zhang Y Q. Engineering Fracture Mechanics, 2021, 245, 107566.
22 Li H, Luo X, Zhang Y Q. International Journal of Fatigue, 2021, 148, 106185.
23 Li Hui, Luo Xue, Zhang Yuqing. China Journal of Highway and Transport, 2020, 33(10), 115 (in Chinese).
李辉, 罗雪, 张裕卿. 中国公路学报, 2020, 33(10), 115.
24 Zhang Z Y, Markus O. International Journal of Fatigue, 2019, 121, 181.
25 Shi C G, Cai X, Wang T L, et al. Construction and Building Materials, 2021, 300, 124275.
26 Sun Y Z, Fang C Z, Wang J C, et al. Journal of Building Materials, 2019, 22 (1), 108 (in Chinese).
孙雅珍, 房辰泽, 王金昌, 等. 建筑材料学报, 2019, 22 (1), 108.
27 Fang C Z, Guo N S, You Z P, et al. Journal of Southeast University (Natural Science Edition), 2021, 51 (6), 1018 (in Chinese).
房辰泽, 郭乃胜, 尤占平, 等. 东南大学学报(自然科学版), 2021, 51 (6), 1018.
28 Sun Y Z, Fang C Z, Wang J C, et al. Materials, 2018, 11(9), 1.
29 Guan H X. A research on viscoelastic fatigue damage model of asphalt mixture. Ph. D. Thesis, Central South University, China, 2005 (in Chinese).
关宏信. 沥青混合料粘弹性疲劳损伤模型研究. 博士学位论文, 中南大学, 2005.
30 Wang F W, Xie S F. Highway Engineering, 2017, 42 (5), 267 (in Chinese).
王凤维, 解松芳. 公路工程, 2017, 42 (5), 267.
31 Dattoma V, Giancane S, Nobile r, et al. International Journal of Fatigue, 2006, 28, 89.
32 Fang C Z, Leng Z, Guo N S, et al. Engineering Mechanics, 2022, 37, 1 (in Chinese).
房辰泽, 冷真, 郭乃胜, 等. 工程力学, 2022, 37, 1.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[3] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[4] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[5] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[6] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[7] 褚召阳, 郭乃胜, 房辰泽, 谭忆秋, 尤占平. 氯盐环境下沥青与沥青混合料性能及劣化机理研究进展[J]. 材料导报, 2023, 37(15): 21110001-9.
[8] 殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
[9] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[10] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[11] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[12] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[13] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[14] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[15] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed