Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21060216-6    https://doi.org/10.11896/cldb.21060216
  无机非金属及其复合材料 |
多尺度评价相对湿度对沥青-集料黏附性的影响
罗蓉1,2,*, 王伟1,2, 罗晶1,2, 习磊1,2
1 武汉理工大学交通学院,武汉 430063
2 湖北省公路工程技术研究中心,武汉 430063
Multi-scale Evaluation of the Influence of Relative Humidity on Asphalt-Aggregate Adhesion Performance
LUO Rong1,2,*, WANG Wei1,2, LUO Jing1,2, XI Lei1,2
1 School of Transportation, Wuhan University of Technology, Wuhan 430063, China
2 Hubei Highway Engineering Research Center, Wuhan 430063, China
下载:  全 文 ( PDF ) ( 3233KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作分别在四种具有代表性的相对湿度条件下,对沥青-集料进行了宏观拉拔试验和微观表面能试验,以研究相对湿度对其黏附性的影响规律。研究结果表明:在宏观上,拉拔力随相对湿度的增加逐渐减小,同时沥青-集料界面由内聚开裂向混合开裂过渡;在微观上,沥青内聚能随相对湿度变化不明显,而沥青-集料界面结合能随着相对湿度的增加而降低。因此,沥青-集料的黏附性随着相对湿度的增加而逐渐减小,水气分子浓度的增大能够加剧水分子对沥青的置换,使得沥青更容易从集料表面剥落。通过沥青的宏观剥落率和微观表面能参数,建立了界面能指标,该指标多尺度地评价了沥青与集料的黏附性,评价结果与宏、微观试验一致,表明界面能指标的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗蓉
王伟
罗晶
习磊
关键词:  公路工程  相对湿度  表面能  沥青混合料  拉拔力  界面能    
Abstract: In order to study the influence of relative humidity on asphalt-aggregate adhesion, this work designs a macroscopic pull-out test and a microscopic test under four representative relative humidity conditions. The research results show that at the macroscopic scale, the pull-out force gradually decreases with the increase of relative humidity, and the cracking of asphalt-aggregate interface transitions from cohesive cracking to mixed cracking;at the microscopic scale, the cohesive energy of asphalt does not change significantly with relative humidity. The adhesive energy of asphalt-aggregate interface decrease with the increase of relative humidity. Therefore, the adhesion of asphalt-aggregate gradually decreases with the increase of relative humidity, and the increase of water vapor concentration can aggravate the displacement of asphalt by water molecules, making it easier for the asphalt to peel off the surface of the aggregate. Based on the macroscopic spalling rate and the microscopic surface energy parameters, an interface energy index was established. This index evaluates the adhesion of asphalt and aggregate at multiple scales. The evaluation results consistent with macro and micro tests indicate the effectiveness of interface energy indicators.
Key words:  road engineering    relative humidity    surface energy    asphalt mixture    pull-out force    interface energy
发布日期:  2023-02-08
ZTFLH:  U414  
基金资助: 国家自然科学基金(51778514)
通讯作者:  *罗蓉,武汉理工大学交通学院教授,湖北省公路工程技术研究中心主任,2007年获得美国得克萨斯州奥斯汀分校土木工程专业工学博士。入选国家“万人计划”科技创新领军人才。主要研究方向为道路沥青混合料损伤机理、沥青路面结构计算及仿真、道路材料表面自由能理论与试验。在国内外学术期刊上发表论文60余篇,授权国家发明专利21项。先后主持国家重点基础研究计划(973计划)青年科学家项目、国家自然科学基金面上项目等20余项。   
引用本文:    
罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
LUO Rong, WANG Wei, LUO Jing, XI Lei. Multi-scale Evaluation of the Influence of Relative Humidity on Asphalt-Aggregate Adhesion Performance. Materials Reports, 2023, 37(2): 21060216-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060216  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21060216
1 Yu J M, Zhou W L. Materials Reports, 2021, 35(2), 2052(in Chinese).
虞将苗, 周文理. 材料导报, 2021, 35(2), 2052.
2 Wang X D. Study on the influence of aggregate lithology and micro-cha-racteristics on the road performance of asphalt mixtures. Master's Thesis, Jilin University, China, 2014(in Chinese).
王旭东. 集料岩性及微观特征对沥青混合料路用性能的影响研究. 硕士学位论文, 吉林大学, 2014.
3 Yang R H, Xu Z H, Li Y Z. Journal of Tongji University(Natural Science), 2007(11), 1486(in Chinese).
杨瑞华, 许志鸿, 李宇峙. 同济大学学报(自然科学版), 2007(11), 1486.
4 Mallick R B, Kottayi N M, Veeraragavan R K, et al. Journal of Transportation Engineering, Part B:Pavements, 2019, 145(3), 04019030.
5 Yuan D H. Investigation and research on the early failure of asphalt pavement and preventive measures in Gansu province. Master's Thesis, Chang'an University, China, 2007(in Chinese).
袁得豪. 甘肃省沥青路面早期破坏调查研究及防治措施. 硕士学位论文, 长安大学, 2007.
6 Luo R, Liu Z Y, Huang T T, et al. China Journal of Highway and Transport, 2018, 31(9), 24(in Chinese).
罗蓉, 柳子尧, 黄婷婷, 等. 中国公路学报, 2018, 31(9), 24.
7 Luo R, Huang T T. Journal of Chongqing Jiaotong University(Natural Science), 2016, 35(S1), 49(in Chinese).
罗蓉, 黄婷婷. 重庆交通大学学报(自然科学版), 2016, 35(S1), 49.
8 Wang D Y, Wang P. Highway Engineering, 2017, 42(6), 69(in Chinese).
王端宜, 王鹏. 公路工程, 2017, 42(6), 69.
9 Mona N, Zhang D R, Maryam S, et al. Construction and Building Materials, 2020, 247, 118616.
10 Luo X, Luo R, Lytton R L. Journal of Engineering Mechanics, 2015, 141(2), 04014114.
11 Wang W N, Xu Q J, Zhou S X, et al. Materials Reports A:Review Papers, 2019, 33(7), 2197(in Chinese).
王威娜, 徐青杰, 周圣雄, 等. 材料导报:综述篇, 2019, 33(7), 2197.
12 Fan J W, Xu J C, Xu P, et al. Journal of China & Foreign Highway, 2018, 38(5), 182(in Chinese).
樊见维, 徐景翠, 徐鹏, 等. 中外公路, 2018, 38(5), 182.
13 Little D N, Jones D R. In:Moisture Sensitivity of Asphalt Pavements-a National Seminar. San Diego, California, 2003, pp. 37.
14 Zhang S Q, Wang Z M, Dong M S, et al. Journal of Experimental Mechanics, 2020, 35(2), 276(in Chinese).
张树群, 汪忠明, 董满生, 等. 实验力学, 2020, 35(2), 276.
15 Sengoz B, Agar E. Building and Environment, 2007, 42(10), 3621.
16 Wang D Y, Wang P. Highway Engineering, 2017, 42(6), 69(in Chinese).
王端宜, 王鹏. 公路工程, 2017, 42(6), 69.
17 Liu H Q, Luo R, Huang T T. China Sciencepaper, 2016(1), 1(in Chinese).
刘涵奇, 罗蓉, 黄婷婷. 中国科技论文, 2016(1), 1.
18 Wang Y. The bonding characteristic research of aggregate-asphalt mortar interface. Master's Thesis, Harbin Institute of Technology, China, 2015(in Chinese).
王元. 集料-沥青胶浆界面粘结特性研究. 硕士学位论文, 哈尔滨工业大学, 2015.
19 Mitchell B S. An introduction to materials engineering and science:for chemical and materials engineers, John Wiley & Sons, UK, 2004, pp. 25.
20 Van Oss C J, Chaudhury M K, Good R J. Chemical Reviews, 1988, 88(6), 927.
21 Good R J. Angewandte Chemie, 2010, 100(11), 1644.
22 Luo R, Zheng S S, Zhang D R, et al. China Journal of Highway and Transport, 2017, 30(6), 209(in Chinese).
罗蓉, 郑松松, 张德润, 等. 中国公路学报, 2017, 30(6), 209.
23 Douillard J M, Zoungrana T, Partyka S. Fuel and Energy Abstracts, 1995, 14(1-2), 51.
24 Zhang J, Apeagyei A K, Grenfell J, et al. In:8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. Springer, Dordrecht, 2016, pp. 719.
25 Good R J. Journal of Adhesion Science and Technology, 1992, 6(12), 1269.
[1] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[2] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[3] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[4] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[5] 纪小平, 孙恩永, 代聪, 周荣征. 铁尾矿沥青混合料的路用性能研究[J]. 材料导报, 2022, 36(21): 21050004-7.
[6] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[7] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[8] 杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
[9] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[10] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[11] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[12] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[13] 王民, 樊向阳, 王滔, 罗蓉, 胡德勇, 石晨光. 无损状态下钢桥面沥青铺装材料变形恢复特性[J]. 材料导报, 2021, 35(Z1): 269-273.
[14] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[15] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed