Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4088-4091    https://doi.org/10.11896/cldb.19070067
  无机非金属及其复合材料 |
碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究
李爽1,2, 刘和鑫1, 杨永1, 李青1, 张之璐1, 朱效宏1, 杨长辉1, 杨凯1
1 重庆大学材料科学与工程学院,重庆 400045
2 成都产品质量检验研究院有限责任公司,成都 610000
Mechanisms of Drying Shrinkage for Alkali-Activated Slag/Metakaolin Composite Materials
LI Shuang1,2, LIU Hexin1, YANG Yong1, LI Qing1, ZHANG Zhilu1, ZHU Xiaohong1, YANG Changhui1, YANG Kai1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 40045,China
2 Chengdu Institute of Product Quality Inspection Co. Ltd, Chengdu 610000,China
下载:  全 文 ( PDF ) ( 3130KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本实验研究了偏高岭土掺量、碱当量及养护温度对碱激发矿渣/偏高岭土砂浆(AASM)干燥收缩性能的影响。结果表明:掺入50%(质量分数)偏高岭土的碱激发体系质量损失加大、内部相对湿度较低,但由于其游离水与基体产物中晶体含量增加,干缩对质量损失的敏感性显著降低。另外,适当提升养护温度可进一步改善产物中晶体成分,能够更好地降低体系干缩。值得注意的是,AASM易碳化,且过高碱当量(如10%)与过长高温养护时间都会降低改善干缩的效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李爽
刘和鑫
杨永
李青
张之璐
朱效宏
杨长辉
杨凯
关键词:  矿渣/偏高岭土复合材料  干燥收缩  内部相对湿度  碳化    
Abstract: This study examined influences of metakaolin, alkali concentration and curing regimes on the drying shrinkage of alkali-activated slag- metakaolin materials (AASM). The results indicated that comparing to the reference sample (no metakaolin), the mass loss of composite materials increased and the internal relative humidity decreased, when the metakaolin was added to replace the 50% slag. Meanwhile, the content of free water and reaction products with crystal structure increased in these materials, which is helpful to reduce the sensitivity of drying shrinkage to mass loss. In addition, appropriately increased of curing temperature could improve the crystal structure of reaction products, which is helpful to reduce the drying shrinkage of the materials. It was noted that AASM was eased be carbonized. Besides, too high alkali concentration (such as 10%) and too long high temperature curing time would have negative effect to drying shrinkage.
Key words:  slag/metakaolin composites    drying shrinkage    internal relative humidity    carbonation
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(51878102);十三五国家重点研发计划(2017YFB0309905);重庆市自然科学基金(cstc2018jcyjAX0403)
通讯作者:  yang.kai@cqu.edu.cn   
作者简介:  李爽,2019年6月毕业于重庆大学,获得工学硕士学位。主要从事碱激发胶凝材料的研究。
杨凯,重庆大学副研究员。2012年12月毕业于英国贝尔法斯特女王大学,获得工学博士学位。主要从事混凝土传输性能、化学激发胶凝材料等方向的研究。
引用本文:    
李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
LI Shuang, LIU Hexin, YANG Yong, LI Qing, ZHANG Zhilu, ZHU Xiaohong, YANG Changhui, YANG Kai. Mechanisms of Drying Shrinkage for Alkali-Activated Slag/Metakaolin Composite Materials. Materials Reports, 2021, 35(4): 4088-4091.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070067  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4088
1 Sakulich A R, Anderson E, Schauer C, et al.Construction & Building Materials, 2009, 23(8), 2951.
2 Bakharev T, Sanjayan J G, Cheng Y B.Cement & Concrete Research, 2001, 31(2), 331.
3 Bakharev T, Sanjayan J G, Cheng Y B.Cement & Concrete Research, 2003, 33(10), 1607.
4 Palacios M, Puertas F.Cement & Concrete Research, 2005, 35(7), 1358.
5 Vilaplana J L, Baeza F J, Galao O, et al.Construction & Building Mate-rials, 2016, 116, 63.
6 Yang L Y, Jia Z J, Zhang Y M, et al.Cement & Concrete Composites, 2015, 57, 1.
7 Jia Z, Yang Y, Yang L, et al.Construction & Building Materials, 2018, 158, 198.
8 Ballekere Kumarappa D, Peethamparan S, Ngami M.Cement & Concrete Research, 2018, 109, 1.
9 Ye H, Radlinska A.Journal of Advanced Concrete Technology, 2016, 14(5), 245.
10 Borges P H R, Banthia N, Alcamand H A, et al.Cement & Concrete Composites, 2016, 71, 42.
11 Park S, Pour-Ghaz M.Construction & Building Materials, 2018, 182,360.
12 Hansen W.Journal of the American Ceramic Society, 1987, 70(5), 4.
13 Thomas R J, Lezama D, Peethamparan S.Cement & Concrete Research, 2017, 91, 13.
14 Bakharev T, Cheng Y B, Sanjayan J G.Cement & Concrete Research, 1999, 29(10), 1619.
15 Ye H, Radlinska A. Cement & Concrete Composites, 2017, 101, 131.
16 Kuenzel C, Vandeperre L J, Donatello S, et al.Journal of the American Ceramic Society, 2012, 95(10),3270.
17 Bernal S A,Mejía de Gutiérrez R, Provis J L.Construction & Building Materials, 2012, 33, 99.
18 Buchwald A, Hilbig H, Kaps C.Journal of Materials Science, 2007, 42(9), 3024.
19 Bernal S A, Rodríguez E D, Mejía de Gutiérrez R, et al.Journal of Materials Science, 2011, 46(16), 5477.
20 Ferone C, Colangelo F, Roviello G. Materials, 2013, 6(5),1920.
21 Haha M B, Saout G L, Winnefeld F, et al.Cement & Concrete Research, 2011, 41(3), 301.
[1] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[2] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[3] 付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
[4] 卞立波, 陶志. 不同吸附性粉体对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 246-249.
[5] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[6] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[7] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[8] 陈龙海, 李长荣, 黎志英, 李正嵩, 刘占林. HRB500E钢中第二相VC的异质形核分析与晶粒细化[J]. 材料导报, 2020, 34(Z1): 436-439.
[9] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[10] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[11] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[12] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
[13] 马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
[14] 常胜男, 李津, 刘皓. 基于生物衍生材料的柔性应变/压力传感器的研究进展[J]. 材料导报, 2020, 34(19): 19173-19182.
[15] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed