Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1077-1081    https://doi.org/10.11896/cldb.19090107
  无机非金属及其复合材料 |
碳化硅陶瓷烧结助剂的作用机制与研究进展
付振东1, 赵健2, 戴叶婧3, 梁骥1, 刘荣正2
1 天津大学材料学院,先进陶瓷与加工技术教育部重点实验室,天津 300072
2 清华大学核能与新能源技术研究院,北京 100084
3 中山大学材料学院,广州 510275
Sintering Aids for Silicon Carbide Ceramics: Action Mechanisms and Research Progress
FU Zhendong1, ZHAO Jian2, DAI Yejing3, LIANG Ji1, LIU Rongzheng2
1 Key Laboratory for Advanced Ceramics and Machining Technology of the Ministry of Education, School of Materials Science and Engineering,Tianjin University, Tianjin 300072, China
2 Institute of Nuclear and New Energy Technology, Tsinghua University,Beijing 100084, China
3 School of Materials, Sun Yat-sen University, Guangzhou 510275, China
下载:  全 文 ( PDF ) ( 2249KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化硅(SiC)陶瓷由于其优异的高温强度、抗氧化性和化学稳定性,在石油化工、航空航天和热交换器等众多领域有广泛的用途。此外,SiC及其复合材料被认为是先进裂变反应堆和未来聚变反应堆的重要结构材料。由于Si-C键的高共价键合性和低自扩散性,纯SiC的烧结极为困难,只能通过高温高压的方式进行致密化。添加烧结助剂对促进SiC的致密化、缓和烧结条件至关重要。本文阐述了烧结助剂存在条件下碳化硅陶瓷致密化的热力学条件,总结了不同烧结机制下烧结助剂的作用机理。从助剂种类的角度综述了目前碳化硅陶瓷烧结领域的常用助剂体系及其研究进展,并展望了碳化硅致密化研究的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付振东
赵健
戴叶婧
梁骥
刘荣正
关键词:  碳化硅  陶瓷  烧结  烧结助剂    
Abstract: Silicon carbide (SiC) ceramics are widely used in petrochemical, aerospace and heat exchangers owing to its excellent properties, such as high strength, high hardness and excellent resistance to oxidation, corrosion and thermal shock. In addition, SiC is also considered to be a structural component of future fission and fusion reactors because of its low activation under neutron irradiation conditions. However, pure dense SiC ceramics can only be obtained by sintering at high temperature with high pressure due to the high covalent bonding of Si-C bonds and low self-diffusion. In order to promote the densification of SiC and to alleviate the sintering conditions, the addition of sintering aids is crucial. In this paper, the thermodynamic conditions by adding sintering aids are discussed and the mechanisms of sintering aids to promoting SiC densification under different sintering conditions are summarized. The classification and the research progress of sintering aids for SiC ceramics in recent years are introduced. Future prospects of the research and development trend of the densification SiC ceramics are proposed.
Key words:  silicon carbide    ceramics    sintering    sintering aids
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TB321  
基金资助: 国家自然科学基金(21771116)
作者简介:  付振东,2018年6月毕业于山东科技大学,获得工学学士学位。现为天津大学材料科学与工程学院硕士研究生,在清华大学刘荣正教授的指导下进行研究。目前主要进行碳化硅陶瓷新型烧结助剂体系的研究。
刘荣正,清华大学核能与新能源技术研究院副教授、博士研究生导师。2007年7月本科毕业于湖南大学材料科学与工程学院,2012年1月在清华大学材料科学与工程系取得博士学位,同年留校进入清华大学核能与新能源技术研究院工作。主要从事核能用碳化硅陶瓷材料、包覆燃料颗粒、流化床化学气相沉积制备纳米材料的研究工作。近年来,在相关领域发表论文50余篇。
引用本文:    
付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
FU Zhendong, ZHAO Jian, DAI Yejing, LIANG Ji, LIU Rongzheng. Sintering Aids for Silicon Carbide Ceramics: Action Mechanisms and Research Progress. Materials Reports, 2021, 35(1): 1077-1081.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090107  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1077
1 Noviyanto A, Yoon D H. Current Applied Physics,2013,13(1),287.
2 Noviyanto A, Han S W, Yu H W, et al. Journal of the European Ceramic Society,2013,33(15-16),2915.
3 She J H, Ueno K. Materials Research Bulletin,1999,34(10-11),1629.
4 Huang Z H, Jia D C, Yang Z H, et al. Materials Science & Technology,2004,12(1),103(in Chinese).
黄智恒,贾德昌,杨治华,等.材料科学与工艺,2004,12(1),103.
5 Li A. Effects of rare earth fluorides/oxide additives on the thermal conductivity of silicon carbide ceramic. Master's Thesis, Huazhong University of Science & Technology, China,2017(in Chinese).
李安.稀土氟化物/氧化物烧结助剂对碳化硅陶瓷热导率的影响.硕士学位论文,华中科技大学,2017.
6 Wang J, Zhang Y J, Gong H Y. Ceramics,2008(4),17(in Chinese).
王静,张玉军,龚红宇.陶瓷,2008(4),17.
7 Wu W B, Jin Z G. Shandong Ceramics,2002,25(1),14(in Chinese).
武卫兵,靳正国.山东陶瓷,2002,25(1),14.
8 Chen Y H, Han F L, Wu L E. Ningxia Engineering Technology,2002,1(1),32(in Chinese).
陈宇红,韩凤兰,吴澜尔.宁夏工程技术,2002,1(1),32.
9 Raju K, Yoon D H. Ceramics International,2016,42(16),17947.
10 You Z, Tanaka H, Otani S, et al. Journal of the American Chemical So-ciety,2010,82(8),1959.
11 Cooper A R, Heuer A H. Mass Transport Phenomena in Ceramics, Sprin-ger US,1975.
12 Chen W, Cao L Z, Zhang X J, et al. Ordnance Material Science and Engineering,2004,27(5),35(in Chinese).
陈巍,曹连忠,张向军,等.兵器材料科学与工程,2004,27(5),35.
13 Li J, Wu C D, Miao L. Jiangsu Ceramics,2001,34(1),4(in Chinese).
李江,吴春冬,苗林.江苏陶瓷,2001,34(1),4.
14 Bahaaddini M, Baharvandi H R, Ehsani N, et al. Ceramics International,2019,45(10),13536.
15 Cao J J, Moberlychan W J, Jonghe L C D, et al. Journal of The American Chemical Society,2010,79(2),461.
16 Liu G W, Muolo M L, Valenza F, et al. Ceramics International,2010,36(4),1177.
17 Omori M, Takei H. Journal of Materials Science,1988,23(10),3744.
18 Ribeiro S, Ribeiro G C, Oliveira M R D. Materials Research,2015,18(3),525.
19 Sciti D, Bellosi A. Journal of Materials Science,2000,35(15),3849.
20 Kim H M, Kim Y W. Journal of the Ceramic Society of Japan,2019,127(4),207.
21 Li A, Fan G F, Shi Y S, et al. Journal of Synthetic Crystals,2018,47(1),25(in Chinese).
李安,范桂芬,史玉升,等.人工晶体学报,2018,47(1),25.
22 Zhou Y, Hirao K, Yamauchi Y, et al. Journal of Materials Research,2003,18(8),1854.
23 Kim Y W, Lim K Y, Seo W S, et al. Journal of the American Ceramic Society,2014,97(3),923.
24 Liang H, Yao X, Huang Z, et al. Journal of the European Ceramic Society,2016,36(8),1863.
25 Kim J Y, Iseki T, Yano T. Journal of the American Ceramic Society,1996,79(10),2744.
26 Huang Z H, Jia D C, Zhou Y, et al. Ceramics International,2003,29(1),13.
27 Huang Z H, Jia D C, Zhou Y, et al. Materials Research Bulletin,2002,37(5),933.
28 Ortiz A L, Borrero-López O, Quadir M Z, et al. Journal of the European Ceramic Society,2012,32(4),965.
29 Borrero-López O, Ortiz A L, Ciudad E, et al. Ceramics International,2012,38(7),5979.
30 Sharma A S, Fitriani P, Yoon D H. Ceramics International,2016,42(7),8713.
31 Zhou S M, Yu C, Zhu H X, et al. Materials for Mechanical Engineering,2015,39(2),45(in Chinese).
周诗民,余超,祝洪喜,等.机械工程材料,2015,39(2),45.
32 Lee J S, Ahn Y S, Nishimura T, et al. Journal of the European Ceramic Society,2012,32(3),619.
33 Yang Y X, Liu Z M, Deng X Y, et al. Bulletin of The Chinese Ceramic Society,2015,34(8),2315(in Chinese).
杨仪潇,刘张敏,邓湘云,等.硅酸盐通报,2015,34(8),2315.
[1] 樊光娆, 苏海军, 郭敏, 张军, 高嘉亮, 郝宣成, 宋强, 刘林, 傅恒志. 生物陶瓷支架促进再生组织血管生成和骨生成的研究进展[J]. 材料导报, 2021, 35(1): 1096-1104.
[2] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[3] 李强, 姜勇刚, 冯军宗, 李良军, 冯坚. 水热-热静压工艺制备陶瓷材料的研究进展[J]. 材料导报, 2020, 34(Z2): 123-127.
[4] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[5] 尹雪亮, 刘洋, 李丽颖, 宫长伟, 杜成武, 毛榜玉, 彭可武. 添加ZrO2对CaAl4O7材料烧结的影响[J]. 材料导报, 2020, 34(Z1): 144-147.
[6] 荣雁. 新型绝热材料在稠油注蒸汽管线保温中的应用[J]. 材料导报, 2020, 34(Z1): 173-177.
[7] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[8] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[9] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[10] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[11] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[12] 孙肖坤, 孙孟勇, 刘小冲, 赵娟. 冷冻干燥法制备高气孔率、低介电的Si3N4陶瓷[J]. 材料导报, 2020, 34(4): 4025-4031.
[13] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[14] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[15] 张英杰,吴昊,曾晓苑,李雪,董鹏,肖杰. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 3090-3098.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed