Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9064-9068    https://doi.org/10.11896/cldb.19040236
  无机非金属及其复合材料 |
无磁金属陶瓷的研究进展
徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰
南京航空航天大学材料科学与技术学院,南京 210016
Research Development on Non-magnetic Cermets
XU Xiangyu, ZHENG Yong, WU Hao, DING Qingjun, WANG Lizhu, OUYANG Jie
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 1755KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着航空航天、电子通信、制造加工等行业的快速发展,磁性材料的应用日趋广泛,磁性材料的生产需求也日益增加。在磁性材料生产过程中,为了保证工件的表面质量以及尺寸精度,通常需要成型的模具为无磁材料。此外,在电子信息领域,为了减少仪器在交变磁场中受到涡流作用引起的能量损耗,有效防止外磁场的干扰,提高设备运行的可靠性,采用无磁材料制造尤为重要。在武器装备领域,无磁材料的制造同样对实现装备的磁隐身,提高其生存、突防、对抗能力具有重要意义。当前,国内外普遍投入生产的无磁材料主要有无磁不锈钢、无磁高锰钢、无磁钢等钢材。但由于无磁钢材料的耐磨性较差,用其制造的无磁材料使用寿命较短,使得硬度高、强韧性好、耐磨性和化学稳定性强的无磁金属陶瓷的优势日渐突显。
当前,WC-Ni系无磁金属陶瓷已成功开发并应用。Ti(C,N)-Ni基金属陶瓷凭借密度低,稀缺战略资源W、Co含量少,成本低等优点,显示出作为替换WC-Ni系无磁金属陶瓷材料的巨大潜力。若该陶瓷能同时具有室温无磁性和高强韧性,则可作为制作无磁工模具、无磁耐磨零部件的理想材料。但目前对Ti(C,N)基金属陶瓷的研究主要集中于显微组织及力学性能,而关于磁性能和无磁化方面的研究甚少。本文对当前两类无磁金属陶瓷的研究进行了综述,阐明了无磁金属陶瓷的制备原理,总结了合金化及制备工艺对金属陶瓷磁学、力学性能的影响规律,指出了无磁金属陶瓷当前存在的不足与需要解决的难点,最后展望了无磁金属陶瓷的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐翔宇
郑勇
吴昊
丁青军
王丽珠
欧阳杰
关键词:  无磁金属陶瓷  合金化  工艺参数  磁学与力学性能    
Abstract: With the rapid development of aeronautics, astronautics, electronic communications, manufacturing and other industries, the application of magnetic materials has become increasingly widespread, and the demand for the production of magnetic materials is also increasing. In order to ensure the surface quality and dimensional accuracy of the workpiece, it is usually required that the mold be a non-magnetic material in the production process of magnetic materials. In addition, in the field of electronic communications, in order to reduce the energy loss caused by the eddy current in the alternating magnetic field, and effectively prevent the interference of the external magnetic field, improving the reliability of equipment operation. It is particularly important to use non-magnetic materials. Moreover, In the field of weaponry, the manufacturing of non-magnetic materials is also important for realizing the magnetic stealth of equipment and improving its survival, penetration and confrontation capabilities. To date, commonly produced non-magnetic materials were mainly non-magnetic stainless steel, non-magnetic high manganese steel, non-magnetic steel and other steel materials. However, due to the poor wear resistance of non-magnetic steel materials, they always have a short service life, which makes the non-magnetic cermets with high hardness, good toughness, wear resistance and chemical stability become more noticed.
Currently, WC-Ni-based non-magnetic cermets have been successfully developed and applied. Meanwhile, Ti(C,N)-Ni-based cermets show great potential as a replacement material for WC-Ni non-magnetic cermet due to their advantages of low density, low content of scarce strategic resources (W, Co) and low cost. Therefore, synthesis of non-magnetic Ti(C,N)-based cermets, with excellent mechanical properties, is of utmost importance for making non-magnetic molds and non-magnetic wear parts. Herein, the research progress of non-magnetic cermets is reviewed. The preparation principle of non-magnetic cemets is described. The effects of alloying and preparation process on magnetic and mechanical properties of cermets are summarized. The presented problems and difficulties in research are discussed. At last, the development trends of non-magnetic cemets are also indicated.
Key words:  non-magnetic cermets    alloying    process parameters    magnetic and mechanical properties
                    发布日期:  2020-04-27
ZTFLH:  TG148  
基金资助: 国家自然科学基金(51674148)
通讯作者:  yzheng_only@263.net   
作者简介:  徐翔宇,2017年毕业于南京航空航天大学,获得工学学士学位。现为南京航空航天大学博士研究生,在郑勇教授的指导下进行研究。目前主要研究领域为高性能Ti(C,N)基金属陶瓷。
郑勇, 南京航空航天大学教授,博士研究生导师,现兼任江苏省粉末冶金学会理事长。1988年毕业于东南大学金属材料专业,获学士学位。2002 年毕业于华中科技大学材料学专业,获博士学位。2003年晋升为教授,2004年引进到南京航空航天大学材料科学与技术学院,2005年被评为博士研究生导师,2011—2012年作为高级访问学者到美国Penn State University进行访问研究。主要从事金属陶瓷材料、微波介质陶瓷、磁性磨料等方面的开发和应用的研究工作。曾于2003年入选“湖北省新世纪高层次人才工程”第二层次,2012年入选江苏省高校“青蓝工程”中青年学术带头人, 2013年入选江苏省第四期“333高层次人才培养工程”第二层次培养对象。
引用本文:    
徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
XU Xiangyu, ZHENG Yong, WU Hao, DING Qingjun, WANG Lizhu, OUYANG Jie. Research Development on Non-magnetic Cermets. Materials Reports, 2020, 34(9): 9064-9068.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040236  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9064
1 丁格尔波夫,克兰道尔.金属陶瓷,上海科学技术出版社,1964.
2 Clark E, Roebuck B. International Journal of Refractory Metals & Hard Materials,1992,11,23.
3 Schmolz G, Momper F. Production Engineer,1988,67(6),36.
4 Huang Z H. Cemented Carbide,2002(1),26(in Chinese).
黄宗浩.硬质合金,2002(1),26.
5 Yang X Z, Lu W M, Zhang L. Rare Metals and Cemented Carbides,2000(1),1(in Chinese).
杨宣增,卢伟民,张立.稀有金属与硬质合金,2000(1),1.
6 Bin J L. Hunan Metallurgy,2003,10(3),10(in Chinese).
宾建林.湖南冶金,2003,10(3),10.
7 Sun J, Lu Y W, Guo X N, et al. Journal of Magnetic Materials and Devices,2004(2),6(in Chinese).
孙景,鲁颖炜,郭小南,等.磁性材料及器件,2004(2),6.
8 Sun J, Wei Q F, Guo X N, et al. Cemented Carbide,2004,21(1),5(in Chinese).
孙景,魏庆丰,郭小南,等.硬质合金,2004,21(1),5.
9 Fang M Y. Jiangxi Metalllurgy,1993(2),43(in Chinese).
方名尧.江西冶金,1993(2),43.
10 Yan M, Peng X L. Basics of magnetics and magnetic materials, Zhejiang University Press, China,2006(in Chinese).
严密,彭晓领.磁学基础与磁性材料,浙江大学出版社,2006.
11 Zhou S Z,Zhuo H Y,Hu M Z.Cemented Carbide,2005(4),193(in Chinese).
周书助,卓海宇,胡茂中.硬质合金,2005(4),193.
12 Zheng G L. Jiangxi Metalllurgy,1986,6(5),24(in Chinese).
郑国梁.江西冶金,1986,6(5),24.
13 Chikazumi S. Handbook of magnetic materials, Metallurgical Industry Press, China,1984(in Chinese).
近角聪信.磁性体手册,冶金工业出版社,1984.
14 Li B Z, Dai W M, Chen D X. Translations of metal electron theory and moving electromagnetic theory, Science Press, China,1985(in Chinese).
李伯藏,戴问民,陈笃行.金属电子论和游移电子磁性理论译文集,科学出版社,1985.
15 Feng D. Metal physics, volume 4, superconductivity and magnetics, Science Press, China,1998(in Chinese).
冯端.金属物理学,第四卷,超导电性和磁性,科学出版社,1998.
16 Gao H Y. Rare Metals and Cemented Carbides,2006,34(3),51(in Chinese).
高海燕.稀有金属与硬质合金,2006,34(3),51.
17 Li M S, Hu M Z. Refractory Metals and Hard Materials Abroad,1993(1),1(in Chinese).
李沐山,胡茂中.国外难熔金属与硬质材料,1993(1),1.
18 Luo Z Q. Cemented Carbide,2005,22(2),93(in Chinese).
罗在清.硬质合金,2005,22(2),93.
19 Yang Q Q, Xiong W H, Zhou S Q. Materials & Design,2017,115,255.
20 Zhao X Z, Zheng Y, Hu Z H, et al. Materials Review,1994(1),17(in Chinese).
赵兴中,郑勇,胡镇华,等.材料导报,1994(1),17.
21 Zhou Z H, Ding P D. Materials Review,2000(4),21(in Chinese).
周泽华,丁培道.材料导报,2000(4),21.
22 Liu N, Hu Z H, Cui K. Rare Metal Materials and Engineering,1994(6),45(in Chinese).
刘宁,胡镇华,崔昆.稀有金属材料与工程,1994(6),45.
23 Jin Y K, Zhang S Y, Lin H E. Iron and Steel,1980(2),14(in Chinese).
靳裕康,张善元,林宏爾.钢铁,1980(2),14.
24 Zhang M, Yang Q Q, Xiong W H, et al. Journal of Alloys and Compounds,2015,650,700.
25 Wang S Q, Yang Q Q, Xiong W H, et al. Cemented Carbide,2017,34(2),90(in Chinese).
王生青,杨青青,熊惟皓,等.硬质合金,2017,34(2),90.
26 洛沙克.硬质合金的强度和寿命,冶金工业出版社,1990.
27 Liu S R. Physical Testing and Chemical Analysis Part A:Physical Testing,2001,37(11),485(in Chinese).
刘寿荣.物化检验:物理分册,2001,37(11),485.
28 Zhang M, Yang Q Q, Xiong W H, et al. Journal of Magnetism and Magnetic Materials,2017,451,385.
29 Liu N, Zhao X Z, Liu C L, et al. Physical Testing and Chemical Analysis Part A:Physical Testing,1995(2),13(in Chinese).
刘宁,赵兴中,刘灿楼,等.理化检验:物理分册,1995(2),13.
30 Zhan B, Liu N, Jin Z B, et al. Transactions of Nonferrous Metals Society of China,2012,22(5),1096.
31 Sun J, Guo X N, Duan J L, et al. Powder Metallurgy Technology,1999,17(2),103(in Chinese).
孙景,郭小南,段积林,等.粉末冶金技术,1999,17(2),103.
32 熊惟皓,杨青青,张曼,等.无磁梯度结构Ti(C,N)基金属陶瓷及其制备方法,CN103710603A,2014-04-09.
33 熊惟皓,张曼,杨青青,等.一种含钒无磁Ti(C,N)基金属陶瓷及其制备方法,CN106011581A,2016-10-12.
34 Zhou W Y. Journal of Magnetic Materials and Devices,1996(1),41(in Chinese).
周文运.磁性材料及器件,1996(1),41.
35 Gu H,Li Z,Bi J W.Powder Metallurgy Industry,2005(3),1(in Chinese).
顾虎,李峥,毕景维.粉末冶金工业,2005(3),1.
36 熊惟皓,瞿峻,杨青青,等.一种无磁金属陶瓷模具及其制备方法,CN101890476A,2010-11-24.
37 Yan Y L, Zheng Y, Yu H, et al. Powder Metallurgy & Metal Ceramics,2007,46(9-10),449.
38 Zhang M. Effect of physical metallurgical factors on microstructure, magnetic and mechanical properties of Ti(C,N)-based cermets. Ph.D. Thesis, Huazhong University of Science & Technology, China,2017(in Chinese).
张曼.物理冶金因素对Ti(C,N)基金属陶瓷组织、磁学和力学性能的影响.博士学位论文,华中科技大学,2017.
39 Liu W B, Wang T J, Chen F X, et al. Rare Metals and Cemented Carbides,2016(5),74(in Chinese).
刘文彬,王铁军,陈飞雄,等.稀有金属与硬质合金,2016(5),74.
[1] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[2] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[3] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[4] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[5] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[6] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[7] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[8] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[9] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[10] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[11] 吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
[12] 姜楠, 张亮, 熊明月, 赵猛, 徐恺恺. 电子封装无铅软钎焊技术研究进展[J]. 材料导报, 2019, 33(23): 3862-3875.
[13] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[14] 靳军, 孙俊生, 孙洪根, 卢庆亮, 许京伟, 杨云. 热作模具表面氮合金化堆焊金属的组织和性能[J]. 材料导报, 2019, 33(19): 3184-3188.
[15] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed