Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9069-9074    https://doi.org/10.11896/cldb.19040176
  无机非金属及其复合材料 |
羟基磷灰石晶体仿生阵列的制备研究进展
钏定泽1, 颜廷亭1, 刘金坤1, 刘继涛1,2, 陈希亮1, 陈庆华1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 云南白药股份有限公司,昆明 650093
Advances in Synthesis of Hydroxyapatite Crystals Biomimetic Arrays
CHUAN Dingze1, YAN Tingting1, LIU Jinkun1, LIU Jitao1,2, CHEN Xiliang1, CHEN Qinghua1
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yunnan Baiyao Group Co., Ltd, Kunming 650093, China
下载:  全 文 ( PDF ) ( 2615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸钙(CaPs) 广泛存在于自然界和脊椎动物的骨骼和牙齿中,具有良好的生物相容性,模仿人体骨骼和牙齿结构的仿生CaPs,在受损骨和牙齿临床修复中具有广阔的应用前景。仿生CaPs,尤其是羟基磷灰石(HAp)的大规模制备,可能会导致生物医学应用材料性能和结构设计的改进。迄今为止,人工模拟骨骼和牙齿层级化结构的HAp材料的可控制备仍然是一个巨大的挑战。
近年来,具有仿生结构的羟基磷灰石(HAp)晶体在骨骼和牙齿的临床修复应用中取得了很大的进展。许多策略已被用于合成仿生HAp结构,模拟人体骨骼和牙齿层级结构的HAp材料在临床中的应用必将会引起未来骨/牙修复硬组织工程的巨大变革。此前,许多综述报道了CaPs材料的合成和性质,然而,它们中的大多数主要集中于HAp颗粒的表征和物理化学及生物学性质上。研究的热点多集中于HAp颗粒的合成、特征、应用、表面改性及形状和尺寸的控制,缺乏针对HAp晶体仿生阵列制备方法的内容。
本文归纳了HAp晶体仿生结构的制备方法,具体包括:分子导向矿化法、溶液诱导磷酸钙(CaPs)形成法、水热/溶剂热法、前体转化法(水解法)、溶胶-凝胶法、电化学沉积法,评价了这些方法的优点和不足,讨论了一些需要进一步研究和发展的关键问题,以期为制备仿生HAp提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钏定泽
颜廷亭
刘金坤
刘继涛
陈希亮
陈庆华
关键词:  羟基磷灰石  分级结构  仿生阵列    
Abstract: Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility. The fabrication of CaPs with structures mimicking those of the bones and teeth has promising applications in clinic. The successful large-scale preparation of biomi-metic CaP, particularly hydroxyapatite (HAp), may lead to the improvement of properties and structural design of biomedical application mate-rials. Up to now, it is still difficult to synthesize bone-like and enamel-like CaP materials with highly oriented architectures.
Recently, hydroxyapatite (HAp) crystals with hierarchical structures have made great progress in clinical repair of bones and teeth. A series of strategies have been used to synthesize bionic HAp structures. The design of CaP hierarchical organization, have great potential to revolutionize the field of hard tissue engineering. Previously, a number of reviews have reported the synthesis and properties of CaP materials. However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles, e.g. synthesis, characteristics, application, surface modification and control of shape and size of HAp particles. There were few reviews about the control of HAp crystal biomimetic arrays.
The current state of the art for the synthesis of HAp crystals hierarchical organization were reviewed, including the molecule directing mineralization method, solution-induced calcium phosphate (CaP) formation method, hydrothermal/solvothermal method, precursor transformation methods, sol-gel methods and electrochemical deposition methods. In addition, advantages and disadvantages of these methods were discussed. Moreover, the possible directions of future research and development in this field were provided as references for the preparation of biomimetic HAp.
Key words:  hydroxyapatite    hierarchical structure    biomimetic array
                    发布日期:  2020-04-27
ZTFLH:  TB332  
基金资助: 云南省大学生创新创业项目(201910674006;201810674002)
通讯作者:  847501438@qq.com   
作者简介:  钏定泽,2017年6月毕业于西安理工大学,获得工程学士学位。于2017年7月至今就读于昆明理工大学材料科学与工程学院,主要从事生物功能材料的研究。
陈庆华,昆明理工大学,教授。1995年10月毕业于法国里昂应用科学学院,冶金及材料物理专业博士学位。于1986年加入昆明理工大学工作至今,主要从事激光热处理、溶胶-凝胶法制备金属陶瓷复合材料的研究,重点研究生物功能材料。在国内外重要期刊发表文章70多篇,申报发明专利40余项。
引用本文:    
钏定泽, 颜廷亭, 刘金坤, 刘继涛, 陈希亮, 陈庆华. 羟基磷灰石晶体仿生阵列的制备研究进展[J]. 材料导报, 2020, 34(9): 9069-9074.
CHUAN Dingze, YAN Tingting, LIU Jinkun, LIU Jitao, CHEN Xiliang, CHEN Qinghua. Advances in Synthesis of Hydroxyapatite Crystals Biomimetic Arrays. Materials Reports, 2020, 34(9): 9069-9074.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040176  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9069
1 Qi C, Musetti S, Fu L H, et al. MedSci,2019,48(10),2659.
2 Lin K, Wu C, Chang J. Acta Biomaterialia,2014,10(10),4071.
3 Palmer L C, Newcomb C J, Kaltz S R, et al. MedSci,2010,40(6),4754.
4 Chen W, Tian B, Lei Y, et al. Materials Science and Engineering C,2016,67(4),395.
5 Bhagavatula P, Curtis A, Broffitt B, et al.Journal of Public Health Dentistry,2018,78(2),165.
6 Sherif E, Maisoon A J, Pantano M F, et al. Nature Communications,2018,9(1),2145.
7 Reznikov N, Bilton M, Lari L, et al. Science,2018,360(6388),eaao2189.
8 Chen W, Long T, Guo Y J, et al. RSC Advances,2013,4(1),185.
9 Yin Y, Yun S, Fang J, et al. Chemical Communications,2009(39),5892.
10 Mehdi Sadat-Shojai, Mohammad-Taghi Khorasani, Ehsan Dinpanah-Khoshdargi, et al. Acta Biomaterialia,2015,45(45),7591.
11 Toworfe G K, Composto R J, Shapiro I M, et al. Biomaterials,2006,27(4),631.
12 Hong L I, Huang W, Zhang Y, et al. Materials Science & Engineering C,2007,27(4),756.
13 Mao C, Li H, Cui F, et al. Journal of Materials Chemistry,1998,8(12),2795.
14 Xie R, Feng Z, Li S, et al. Crystal Growth & Design,2011,11(12),5206.
15 Yin Y, Yun S, Fang J, et al. Chemical Communications,2009(39),5892.
16 Xu Y, Ma G, Wang X,et al. Crystal Growth & Design,2012,12(7),3362.
17 Chen H, Clarkson B H, Sun K, et al. Journal of Colloid & Interface Science,2005,288(1),97.
18 Naohiro H, Kotaro S, Hironori S, et al. Crystal Growth & Design,2018,18,5038.
19 Li L, Mao C, Wang J, et al. Advanced Materials,2011,23(40),4695.
20 Wang Wensi, Yuya Oaki, Chikara Ohtsuki, et al. Journal of Asian Ceramic Societies,2013,1(2),143.
21 Tao J, Pan H, Zeng Y, et al. The Journal of Physical Chemistry B,2007,111(47),13410.
22 Hayakawa S, Li Y, Tsuru K, et al. Acta Biomaterialia,2009,5(6),2152.
23 Satoshi H, Yusuke O, Kazuki Y, et al. Ceramics International,2018,44(15),18719.
24 Xia W, Lausmaa J, Thomsen P, et al. Journal of Biomedical Materials Research. Part B, Applied Biomaterials,2012,100B(1),75.
25 Chen Feng, Zhu Yingjie, Wang Kewei, et al. Crystengcomm,2011,13(6),1858.
26 Chen F, Zhu Y J, Zhao X Y, et al. CrystEngComm,2013,15(22),4527.
27 Chen H, Tang Z, Liu J, et al. Advanced Materials,2010,18(14),1846.
28 Lu Z Z, Xu H Y, Xin M D, et al. The Journal of Physical Chemistry C,2010,114(2),820.
29 Wei X, Fu C, Savino K, et al. Crystal Growth & Design,2012,1(12),3474.
30 Wei X, Fu C, Savino K, et al. Crystal Growth & Design,2012,12(1),217.
31 Wang G, Lu Z, Zhao X, et al. Journal of Materials Chemistry,2013,1,2455.
32 Wang G, Lu Z, Xie K Y, et al. Journal of Materials Chemistry,2012,22(36),19081.
33 Zhang J, Jiang D, Zhang J, et al. Langmuir,2010,26(5),2989.
34 Zou Z, Liu X, Chen L, et al. Journal of Materials Chemistry,2012,22(42),22637.
35 Furuichi K, Oaki Y, Imai H. Chemistry of Materials,2006,18(1),229.
36 Liu X, Lin K, Wu C, et al. Small,2014,10(1),152.
37 Liu X, Lin K, Qian R, et al. Chemistry-A European Journal,2012,18(18),5519.
38 Zhou Zhengren, Yi Jiang, Sun Zhihui, et al. Ceramics International,2018,44 (11),11983.
39 Lu B Q, Zhu Y J, Chen F, et al. Chemistry-A European Journal,2014,20(23),7116.
40 Cao Y, Mei M L, Li Q L, et al. ACS Applied Materials & Interfaces,2014,6(1),410.
41 Busch S.Angewandte Chemie International Edition,2010,43(11),1428.
42 Yuan Y, Liu C, Zhang Y, et al. Materials Chemistry and Physics,2008,112(1),275.
43 Yang Z, Huang Y, Chen S, et al. Journal of Materials Science,2005,40(5),1121.
44 Ban S, Hasegawa J. Biomaterials,2002,23(14),2965.
45 Ban S, Maruno S. Biomaterials,1998,19(14),1245.
46 Zhang Y, Liu Y, Zhang Q, et al. Materials Letters,2013,107(3),337.
47 Ye W, Wang X X. Materials Letters,2007,61(19-20),4062.
48 Santos E A D, Moldovan M S, Jacomine L, et al. Materials Science & Engineering: B (Advanced Functional Solid-State Materials),2010,169(1-3),138.
49 Liao Y M, Feng Z D, Li S W. Thin Solid Films,2008,516(18),6145.
[1] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[2] 方艳, 徐水, 吴婷芳, 朱勇. 丝胶蛋白/羟基磷灰石/聚己内酯复合支架材料的制备及表征[J]. 材料导报, 2019, 33(Z2): 533-537.
[3] 姚进, 毛龙, 刘小超, 李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料[J]. 材料导报, 2019, 33(Z2): 617-622.
[4] 晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(23): 4008-4015.
[5] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[6] 单文瑞,张玉勤,何正员,蒋业华,. Ti35Nb7Zr-xHA生物复合材料的微观组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 60-64.
[7] 张永祥, 廖建国, 李艳群, 路善行, 段星泽. 纳米羟基磷灰石/壳聚糖复合生物材料研究*[J]. 《材料导报》期刊社, 2017, 31(17): 53-60.
[8] 漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed