Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 60-64    https://doi.org/10.11896/j.issn.1005-023X.2017.022.012
  材料研究 |
Ti35Nb7Zr-xHA生物复合材料的微观组织与性能研究*
单文瑞1,2,张玉勤1,2,何正员1,2,蒋业华1,2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 金属先进凝固成形及装备技术国家地方联合工程实验室,昆明 650093
Research on Microstructure and Properties of Ti35Nb7Zr-xHA Biocomposites
SHAN Wenrui1,2, ZHANG Yuqin1,2, HE Zhengyuan1,2, JIANG Yehua1,2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 National-local Joint Engineering Laboratory for Advanced Technology of Metal Solidification Forming and Equipment, Kunming 650093
下载:  全 文 ( PDF ) ( 729KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善Ti-Nb-Zr合金的生物活性,采用放电等离子烧结(SPS)技术制备了不同羟基磷灰石(HA)含量的Ti35Nb7Zr-xHA(x=0、5、10、20(质量分数,%))生物复合材料,研究了HA含量对复合材料微观组织、力学性能及体外生物活性的影响。结果表明,复合材料主要由β-Ti、α-Ti、HA及陶瓷相(TixPy、CaTiO3、Ti2O、CaO)组成;HA含量增加会导致β-Ti减少而α-Ti和陶瓷相明显增多;与Ti-35Nb-7Zr合金(E:45 GPa,σ:1 736 MPa)相比,HA含量为5%和10%时,复合材料的抗压强度分别为1 662 MPa 和1 593 MPa,弹性模量分别为48 GPa和49 GPa,综合力学性能与Ti-35Nb-7Zr合金接近,展现出良好的力学性能,而过高的HA含量(20%)会导致复合材料弹性模量明显升高(E:55 GPa)、抗压强度急剧下降(σ:958 MPa),复合材料的力学性能降低;体外生物活性实验表明,加入10% HA的复合材料在人工模拟体液(SBF)中浸泡7 d后表面生成了大量的类骨磷灰石层,与Ti-35Nb-7Zr合金相比,其显示出更优异的体外生物活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单文瑞
张玉勤
何正员
蒋业华
关键词:  钛基生物复合材料  羟基磷灰石  微观组织  力学性能  体外生物活性    
Abstract: To improve the bioactivity of Ti-Nb-Zr alloy, Ti35Nb7Zr-xHA biocomposites with different hydroxyapatite (HA) contents (x=0,5,10, 20 (mass fraction,%)) were prepared by spark plasma sintering (SPS) technique. The effects of HA contents on microstructure, mechanical properties and in vitro bioactivity of the composites were investigated. The results show that the composites are mainly consisted of β-Ti phase, α-Ti phase, HA and metal-ceramic phases (TixPy,CaTiO3,Ti2O,CaO). With the increase of the HA content, the β-Ti phase decrease, while the α-Ti phase and metal-ceramic phase increase obviously. Compared to Ti-35Nb-7Zr alloy (E:45 GPa,σ:1 736 MPa), the compressive strength and the elastic modulus of Ti35Nb7Zr-xHA composites (x=5, 10) are in range of 1 593—1 662 MPa and 48—49 GPa, respectively, which are close to those of Ti-35Nb-7Zr alloy, and presenting a good mechanical properties. However, the Ti35Nb7Zr-20HA composite has highest elastic modulus (E:55 GPa) and lowest compressive strength (σ:958 MPa) compared with other composites, presenting poor mechanical property. Furthermore, lots of bone-like apatite is deposited on the surface of Ti35Nb7Zr-10HA composite after soaking in SBF for 7 d via in vitro bioactivity experiments, the Ti35Nb7Zr-10HA presents an excellent bioactivity compared with the Ti-35Nb-7Zr alloy.
Key words:  titanium matrix biocomposite    hydroxyapatite    microstructure    mechanical properties    in vitro bioactivity
                    发布日期:  2018-05-08
ZTFLH:  TB333  
基金资助: *国家自然科学基金(31660262);云南省教育厅科学研究基金(2016ZZX049)
通讯作者:  何正员,男,1983年生,博士,讲师,主要研究方向为生物医用复合材料等E-mail:hzy-810@163.com   
作者简介:  单文瑞:男,1989年生,硕士研究生,研究方向为先进钛合金材料E-mail:489356742@qq.com
引用本文:    
单文瑞,张玉勤,何正员,蒋业华,. Ti35Nb7Zr-xHA生物复合材料的微观组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 60-64.
SHAN Wenrui, ZHANG Yuqin, HE Zhengyuan, JIANG Yehua,. Research on Microstructure and Properties of Ti35Nb7Zr-xHA Biocomposites. Materials Reports, 2017, 31(22): 60-64.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.012  或          http://www.mater-rep.com/CN/Y2017/V31/I22/60
1 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog Mater Sci, 2009,54(3):397.
2 Chen Q, Thouas G A. Metallic implant biomaterials[J]. Mater Sci Eng R, 2015,87:1.
3 Wan Weifeng, Liu Huiqun, Jiang Yong, et al. Microstructure characterization and property tailoring of a biomedical Ti-19Nb-1.5Mo-4Zr-8Sn alloy[J]. Mater Sci Eng A, 2015,637:130.
4 Chaves J M, Florencio O, et al. Anelastic relaxation associated to phase transformations and interstitial atoms in the Ti-35Nb-7Zr alloy[J]. J Alloys Compd, 2014,616:420.
5 Almeida L H, Grandini C R, Caram R. Anelastic spectroscopy in a Ti alloy used as biomaterial[J]. Mater Sci Eng A, 2009,s521-522(10):59.
6 Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective[J]. Biomaterials, 1998,19(19):1621.
7 Taddei E B. Characterization of Ti-35Nb-7Zr-5Ta alloy produced by powder metallurgy[J]. Mater Sci Forum, 2005,498:34.
8 Rack H J, Qazi J I. Titanium alloys for biomedical applications[J]. Mater Sci Eng C, 2006,26(8):1269.
9 Du Weiwei, Zhang Yuqin, Jiang Yehua, et al. Effect of spark plasma sintering temperatures on microstructure and mechanical properties of Ti-35Nb-7Zr-5Ta alloy[J]. Rare Metal Mater Eng, 2014,43(4):955(in Chinese).
杜未未, 张玉勤, 蒋业华, 等. 放电等离子烧结温度对Ti-35Nb-7Zr-5Ta合金显微组织和力学性能的影响[J]. 稀有金属材料与工程, 2014,43(4):955.
10 Ffler R, Fleischer M, Kern D P. An anisotropic dry etch process with fluorine chemistry to create well-defined titanium surfaces for biomedical studies[J]. Microelectron Eng, 2012,97(97):361.
11 Xu Shuhua, Wang Yingjun, Luo Chengping. Progress in research on hap bioactive ceramic coatings[J]. Mater Rev, 2002,16(1):48(in Chinese).
徐淑华, 王迎军, 罗承萍. 生物羟基磷灰石涂层材料的研究进展[J]. 材料导报, 2002,16(1):48.
12 Arifin A, Sulong A B, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review[J]. Mater Des, 2014,55(6):165.
13 Biemond J E, Eufrásio T S, Hannink G, et al. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures[J]. J Mater Sci Mater Med, 2011,22(4):917.
14 Ahlhelm M, Gunther P, Scheithauer U, et al. Innovative and novel manufacturing methods of ceramics and metal-ceramic composites for biomedical applications[J]. J Eur Ceram Soc, 2016,36(12):2883.
15 Woo K D, Sang H K, Ji Y K, et al. Fabrication and biomaterial characteristics of HA added Ti-Nb-HA composite fabricated by rapid sintering[J]. J Korean Institute of Metals and Materials, 2012,50(1):86.
16 Woo K D, Park S H, Kim J Y, et al. Microstructure and mechanical properties of Ti-35Nb-7Zr-XCPP siomaterials fabricated by rapid sintering[J]. Korean J Mater Res, 2012,22(3):150.
17 Park S H, Woo K D, Kim S H, et al. Mechanical properties and bio-compatibility of Ti-Nb-Zr-HA biomaterial fabricated by rapid sintering using hemm powders[J]. Korean J Mater Res, 2011,21(7):384.
18 Wu Zeen, Hu Rui, Zhang Tiebang, et al. Effect of oxygen on microstructure and phase transformation of high Nb containing TiAl alloys[J]. Acta Metall Sin, 2013,49(11):1381(in Chinese).
吴泽恩, 胡锐, 张铁邦, 等. 间隙原子O对高Nb-TiAl合金显微组织与相转变的影响[J]. 金属学报, 2013,49(11):1381.
19 Bovand D, Yousefpour M, Rasouli S, et al. Characterization of Ti-HA composite fabricated by mechanical alloying[J]. Mater Des, 2015,65:447.
20 Zhu S, Wang X, Yoshimura M, et al. Synthesis of Ti-based glassy alloy/hydroxyapatite composite by spark plasma sintering[J]. Mater Trans, 2008,49(3):502.
21 Zhu Kangping, Zhu Jianwen, Qu Henglei. Development and application of biomedical Ti alloys abroad[J]. Rare Metal Mater Eng, 2012,41(11):2058(in Chinese).
朱康平, 祝建雯, 曲恒磊. 国外生物医用钛合金的发展现状[J]. 稀有金属材料与工程, 2012,41(11):2058.
22 He Zhengyuan, Zhang Yuqin, Zhou Rong, et al. Microstructure evolution and mechanical properties of Ti-35Nb-7Zr-10CPP biocomposites[J]. Rare Metal Mater Eng, 2016,45(4):1061(in Chinese).
何正员, 张玉勤, 周荣, 等. Ti-35Nb-7Zr-10CPP生物复合材料的微观组织演变与力学性能研究[J]. 稀有金属材料与工程, 2016,45(4):1061.
23 He Zhengyuan, Zhang Lei, Shan Wenrui, et al. Characterizations on mechanical properties and in vitro bioactivity of biomedical Ti-Nb-Zr-CPP composites fabricated by spark plasma sintering[J]. Acta Metall Sin, 2016,11(29):1073.
24 Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties[J]. Biomaterials, 2003,24(13):2161.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed