Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23070188-7    https://doi.org/10.11896/cldb.23070188
  无机非金属及其复合材料 |
养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响
刘晓楠1,2, 张春晓1,3, 王世合1,3, 张高展4, 毛继泽2, 曹少华1,4,*, 刘国强1,4,*
1 军事科学院国防工程研究院工程防护研究所,河南 洛阳 471023
2 哈尔滨工程大学航天与建筑工程学院,哈尔滨 150001
3 河南省特种防护材料重点实验室,河南 洛阳 471023
4 安徽建筑大学材料与化学工程学院,合肥 230009
The Effect of Curing Regime on the Dynamic and Static Mechanical Properties of Ultra-high Performance Concrete with Addition of Nano-SiO2
LIU Xiaonan1,2, ZHANG Chunxiao1,3, WANG Shihe1,3, ZHANG Gaozhan4, MAO Jize2, CAO Shaohua1,4,*, LIU Guoqiang1,4,*
1 Institute of Defence Engineering AMS, PLA, Luoyang 471023, Henan, China
2 College of Aerospace and Civil Engineering, Harbin Engineering University , Harbin 150001, China
3 Henan Key Laboratory of Special Protective Materials, Luoyang 471023, Henan, China
4 School of Matreials & Chemical Engineering ,Anhui Jianzhu University, Hefei 230009, China
下载:  全 文 ( PDF ) ( 6386KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作首先研究了标准养护、蒸汽养护、干热养护和组合养护(先蒸汽养护再干热养护)条件下纳米SiO2掺量对超高性能混凝土(UHPC)静态力学性能的影响规律。试验结果表明:相比标准养护,蒸汽养护和组合养护均可显著提高UHPC的抗压和抗折强度,干热养护提高了UHPC的抗压强度但降低了抗折强度;标准养护下,纳米SiO2掺量为5%时UHPC的抗压和抗折强度达到最高,蒸汽养护、干热养护和组合养护的最佳掺量为3%。依据静态试验的研究结果,本工作使用Φ100 mm霍普金森杆探究了不同养护制度对掺有3%纳米SiO2的UHPC动态力学性能的影响,使用经验公式对UHPC动态增长因子进行了拟合,构建了不同应变率下UHPC的应力应变曲线本构模型,并计算了不同养护制度下UHPC的耗能能力。研究发现相同应变率下标准养护UHPC的动态增长因子最大,组合养护UHPC的耗能能力最高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓楠
张春晓
王世合
张高展
毛继泽
曹少华
刘国强
关键词:  养护制度  超高性能混凝土(UHPC)  纳米SiO2  动态力学性能    
Abstract: The influence of nano-SiO2 content on the static mechanical properties of ultra-high performance concrete (UHPC) under the curing regime of standard curing, steam curing, dry-heat curing and steam-dry heat combined curing was studied.The test results showed that compared with standard curing regime, both steam curing regime and combined curing regime could significantly improve the compressive and flexural strength of UHPC.Dry-heat curing regime could improve the compressive strength of UHPC but reduce the flexural strength. Under standard curing regime, the compressive and flexural strength of UHPC reached the highest when the content of nano-SiO2 is 5%.Under steam curing regime, dry-heat curing regime and combined curing regime,the best nano-SiO2 content is 3%.According to the results of static test, the dynamic compressive properties of UHPC with 3% nano-SiO2 content under different curing regimes were studied with 100 mm Split Hopkinson Pressure Bar. According to the results of dynamic test,the dynamic increasing factor of UHPC was fitted with the empirical formula and the constitutive model of dynamic strain-stress curve under different strain rates was constructed.The energy consumption capacity of UHPC under different curing regim was calculated.The results showed that under the same strain rate compared with other curing regimes, the dynamic increasing factor of UHPC under standard curing regime was the largest and the energy consumption capacity of UHPC under combined curing regime was the highest.
Key words:  curing regime    ultra-high performance concrete (UHPC)    nano-SiO2    dynamic mechanical performance
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TU528.31  
通讯作者:  *曹少华,军事科学院国防工程研究院工程防护研究所工程师。目前,主要从事混凝土修复材料、高性能混凝土等方面研究工作。yilierba@163.com;331239017@qq.com   
作者简介:  刘晓楠,现为哈尔滨工程大学航天与建筑工程学院与军事科学院联合培养博士研究生,目前主要从事超高性能混凝土抗爆抗侵彻动态力学性能、低温下混凝土力学性能等方面研究。
引用本文:    
刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
LIU Xiaonan, ZHANG Chunxiao, WANG Shihe, ZHANG Gaozhan, MAO Jize, CAO Shaohua, LIU Guoqiang. The Effect of Curing Regime on the Dynamic and Static Mechanical Properties of Ultra-high Performance Concrete with Addition of Nano-SiO2. Materials Reports, 2025, 39(2): 23070188-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23070188  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23070188
1 Richard P,Cheyrezy M. ACI Spring Conversion, 1994.
2 Richard P,Cheyrezy M. Cement & Concretce Research, 1995, 25(7),1501.
3 Shi C,Wu Z,Xiao J,et al. Construction and Building Materials, 2015, 101,741.
4 Song M,Wang C,Cui Y,et al. Advances in Civil Engineering, DOI: 10.1155/2021/4002536.
5 Korpa A,Kowald T,Trettin R. Cement & Concrete Research, 2009, 39(2),69.
6 Huang J,Wu J,Zhao L. Bulletin of the Chinese Ceramic Society, 2019,38(8),2680 (in Chinese).
黄杰,吴瑾,赵林.硅酸盐通报,2019, 38(8),2680.
7 Krstulović R, Dabić P. Cement & Concrete Research, 2000, 30,693.
8 Zhang H,Ti T,He B,et al. Construction and Building Materials, 2019, 213,469.
9 Zhang G Z,Ge J C,Zhang C X,et al. Materials Reports.2021,35(15),15125.(in Chinese).
张高展,葛竞成,张春晓,等.材料导报,2021,35(15),15125.
10 Niu X Q.Study on mechanism of combined curing composed of precuring in hot water and heating in dry air for optimizing mechanical properties and thermally explosive spalling resistance of ultra-high performance concrete. Ph.D. Thesis, Beijing Jiaotong University, China, 2019 (in Chinese).
牛旭婧. 热水—干热组合养护优化超高性能混凝土力学及抗高温爆裂性能的机理研究. 博士学位论文.北京交通大学.2019.
11 Schmidt M,Amrhein K,Braun T,et al. Cement and Concrete Composites, 2013,36,3.
12 Huang C L. Potential effect of surface modified nano-SiO2 on the cement paste hydration in early. Ph.D. Thesis, China University of Mining and Technology -Beijing, China, 2018(in Chinese).
黄春龙.表面改性二氧化硅纳米颗粒对水泥早期水化影响的研究.博士学位论文,中国矿业大学(北京),2018.
13 Li J,Sun X D,He W F. Concrete.2022(2),90(in Chinese).
李婕,孙煦东,何文福.混凝土,2022(2),90.
14 Li Q H,Zhao X,X S L. Engineering Mechanics,2017,34(2),85(in Chinese).
李庆华,赵昕,徐世烺.工程力学,2017,34(2),85.
15 Gu Y. Modifying cementitious materials with core-shell nano-SiO2. Ph.D. Thesis, Southeast University, China, 2017(in Chinese).
顾越.核壳纳米SiO2改性水泥基材料性能研究.博士学位论文.东南大学,2017.
16 Song L,Hu S S. Explosion and Shock Waves, 2005, 25(4),368 (in Chinese).
宋力,胡时胜.爆炸与冲击, 2005, 25(4),368 .
17 Li W G,Huang Z Y,Hu G Q,et al. Construction and Building Materials, 2016, 131,767.
18 Taekgeun O,Booki C,Yun S J,et al. Cement and Concrete Composites,2023,138,104957.
19 Sun J L,Zhang C X,Mao J Z,et al. Materials Reports,2024,38(18),62.(in Chinese).
孙嘉伦,张春晓,毛继泽,等.材料导报, 2024,38(18),62.
20 Ravichandran G,Subhash G . Journal of the American Ceramic Society, 2010, 77(1),263.
21 Dong Y L,Xie H P,Li S P. Engineering Mechanics,1996(1),44 (in Chinese).
董毓利,谢和平,李世平.工程力学,1996(1),44.
22 Nie L,Xu J,Bai E. Construction and Building Materials,2018,165,232.
23 Li Y , Zhai Y , Liang W , et al. Materials, DOI:10.3390/ma13184056.
24 Yang M H,Lu Z C,Hu R Z, et al. Journal of Wuhan University of Technology, 2007(4),95 (in Chinese).
杨明辉,赵明华,曹文贵.武汉理工大学学报,2007(4),95.
25 Li L T. Building Science, 2019, 35(11),6 (in Chinese).
李林涛. 建筑科学, 2019, 35(11),6.
[1] 郭冰冰, 储嘉, 王艳, 牛荻涛. 碳化养护混凝土生命周期环境影响的评估[J]. 材料导报, 2024, 38(24): 23070186-10.
[2] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[3] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[4] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[5] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[6] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[7] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[8] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[9] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[10] 王雷, 王文恒, 廖明义. 二元嵌段丁苯橡胶的合成及动态力学性能的研究[J]. 材料导报, 2023, 37(14): 21120152-5.
[11] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[12] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[13] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[14] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[15] 陈旭勇, 程子扬, 詹旭, 吴巧云. 纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟[J]. 材料导报, 2021, 35(23): 23235-23240.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed