Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23070186-10    https://doi.org/10.11896/cldb.23070186
  无机非金属及其复合材料 |
碳化养护混凝土生命周期环境影响的评估
郭冰冰1,*, 储嘉1, 王艳2, 牛荻涛1
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学材料科学与工程学院,西安 710055
Life Cycle Assessment of Environmental Impacts of CO2-cured Concrete
GUO Bingbing1,*, CHU Jia1, WANG Yan2, NIU Ditao1
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 5670KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化养护能够实现混凝土对CO2的高附加值利用与封存,因此本工作开展碳化养护对混凝土生命周期环境影响的研究。结合文献中的试验研究,建立碳化养护混凝土生命周期环境影响的数据集,进而开展碳排放的计算。基于蒙特卡洛模拟方法,研究原材料碳排放系数不确定性对环境净效益计算结果的影响。结果表明,水泥生产过程和混凝土养护过程的碳排放是影响碳化养护混凝土环境效益的关键因素。120组数据集中有21组会产生正的环境净效益,其余99组会产生负的环境净效益。增加碳化养护时间和气压能够提升混凝土的CO2封存量,但碳化设备能耗的提升导致碳化养护混凝土生命周期碳排放过高。碳化养护时间过长、养护气压过高或混凝土力学性能降低皆为碳化养护混凝土环境净效益为负的原因。根据碳化养护对混凝土生命周期环境影响的计算结果,建议采用常压条件下的碳化养护,其养护时间控制在6 h内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭冰冰
储嘉
王艳
牛荻涛
关键词:  碳化养护混凝土  生命周期评价  环境效益  养护制度  蒙特卡洛模拟    
Abstract: Considering that CO2 curing for concrete can achieve high-value utilization and sequestration of CO2, the life cycle environmental impact assessment of CO2-cured concrete was studied here. Based on experimental investigations in existing literatures, datasets of the life cycle environmental impacts for CO2-cured concrete were established, and then the carbon emissions were calculated. Based on the Monte Carlo simulation method, the uncertainty analysis of the influence of carbon emission coefficient of raw materials on the calculation results of environmental net benefit was studied. The results indicated that carbon emissions from the production process of cement and the curing process of concrete are key factors affecting the environmental benefits of CO2-cured concrete. The results of uncertainty analysis showed that, among the 120 datasets, 21 datasets would produce positive environmental net benefits, and the other 99 datasets would produce negative environmental net benefits. Increasing CO2 curing time or gas pressure could enhance the amount of CO2 captured by concrete, but it could also increase the energy consumption of carbonation equipment, leading to excessive carbon emissions during the production process of CO2-cured concrete. Excessive CO2 curing time, high pressure and the resulted reduction of mechanical properties of concrete can lead to negative environmental net benefits of CO2-cured concrete. Thus, based the calculation results in this work, it is recommended to use atmospheric pressure CO2 curing for a duration of less than 6 h.
Key words:  CO2-cured concrete    life cycle assessment    environmental benefits    curing regime    Monte Carlo simulation
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TU375  
基金资助: 国家自然科学基金 (52341803) ; 深圳市承接国家重大科技项目的产业化应用研究 (CJGJZD20220517141806015)
通讯作者:  * 郭冰冰,西安建筑科技大学土木工程学院副教授、硕士研究生导师。2012年河南工业大学土木工程专业本科毕业,2014年哈尔滨工业大学土木工程专业硕士毕业,2018年哈尔滨工业大学防灾减灾及防护工程专业博士毕业后到西安建筑科技大学工作至今。目前主要从事混凝土耐久性、低碳混凝土等方面的研究工作。发表SCI论文30余篇,包括Journal of Colloid and Interface Science、Cement and Concrete Composites、Construction and Building Materials、Journal of Materials in Civil Engineering等。 guobingbing212@163.com   
引用本文:    
郭冰冰, 储嘉, 王艳, 牛荻涛. 碳化养护混凝土生命周期环境影响的评估[J]. 材料导报, 2024, 38(24): 23070186-10.
GUO Bingbing, CHU Jia, WANG Yan, NIU Ditao. Life Cycle Assessment of Environmental Impacts of CO2-cured Concrete. Materials Reports, 2024, 38(24): 23070186-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070186  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23070186
1 Zhan B J, Poon C S, Shi C J. Cement and Concrete Composites, 2013, 42, 1.
2 Chen H, Mou Y. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(2), 7(in Chinese).
陈欢, 牟瑛. 重庆工商大学学报(自然科学版), 2023, 40(2), 7.
3 Wang Y, Guo C H, Chen X J, et al. China Geology, 2021, 4(4), 720.
4 Hepburn C, Adlen1 E, Beddington J, et al. Nature, 2019, 575(7781), 87.
5 Lu B, Shi C J, Cao Z J, et al. Journal of Cleaner Production, 2019, 233, 421.
6 Liu K Z, Zhang J R, Tian X, et al. Materials Reports, 2023, 37(23), 1 (in Chinese).
刘奎周, 张建仁, 田湘, 等. 材料导报, 2023, 37(23), 1.
7 Rostami V, Shao Y X, Boyd A J. Journal of Materials in Civil Engineering, 2012, 24(9), 1221.
8 Liu Z, Meng W N. Journal of CO2 Utilization, 2021, 44, 101428.
9 Sharma D, Goyal S. Journal of Cleaner Production, 2018, 192, 844.
10 El-Hassan H, Shao Y X. Cement and Concrete Composites, 2015, 62, 168.
11 El-Hassan H, Shao Y X. Magazine of Concrete Research, 2014, 66(14), 708.
12 Zhang D, Shao Y X. Journal of CO2 Utilization, 2018, 27, 137.
13 Shao Y X, Mirza M S, Wu X R. Canadian Journal of Civil Engineering, 2006, 33(6), 776.
14 Ashraf W. Construction and Building Materials, 2016, 120, 558.
15 Ashraf W, Olek J, Sahu S. Construction and Building Materials, 2019, 210, 473.
16 Gilroy B, Black L, Thompson D, et al. Civil Engineering Research in Ireland, 2020.
17 Zeng H M, Liu Z C, Wang F Z. Journal of the Chinese Ceramic Society, 2020, 48(11), 1801 (in Chinese).
曾海马, 刘志超, 王发洲. 硅酸盐学报, 2020, 48(11), 1801.
18 Zhang F, Mo L W, Deng M. Journal of the Chinese Ceramic Society, 2016, 44(5), 640 (in Chinese).
张丰, 莫立武, 邓敏. 硅酸盐学报, 2016, 44(5), 640.
19 Kashef-Haghighi S, Ghoshal S. Industrial and Engineering Chemistry Research, 2010, 49(3), 1143.
20 Zhang N, Duan H B, Miller T R, et al. Renewable and Sustainable Energy Reviews, 2020, 117, 109495.
21 Guo B B, Yu R C, Wang J, et al. Construction and Building Materials, 2023, 401, 132868.
22 Guo B B, Chu G X, Yu R C, et al. Journal of Building Engineering, 2023, 76, 107311.
23 Rostami V, Shao Y X, Boyd A J. Construction and Building Materials, 2011, 25(8), 3345.
24 Ravikumar D, Zhang D, Keoleian G, et al. Nature Communications, 2021, 12(1), 855.
25 ISO 14040-14044. International Organization for Standardization, Swit-zerland, 2006.
26 Ji C Y, Wu Y T, Zhao Z F, et al. Sustainability, 2022, 14(11), 6907.
27 Li X D, Wang S, Kong X Q, et al. China Civil Engineering Journal, 2011, 44(1), 132 (in Chinese).
李小冬, 王帅, 孔祥勤, 等. 土木工程学报, 2011, 44(1), 132.
28 Müller H S, Haist M, Vogel M. Construction and Building Materials, 2014, 67, 321.
29 Zhang Y R, Xu Y Q, Yao Z Y, et al. Journal of Zhejiang University of Technology, 2020, 48(6), 648 (in Chinese).
章玉容, 徐雅琴, 姚泽阳, 等. 浙江工业大学学报, 2020, 48(6), 648.
30 Long G C, Gao Y, Xie Y J. Construction and Building Materials, 2015, 84, 301.
31 Shao Y X. Beneficial use of carbon dioxide in precast concrete production. McGill University, Montreal, Canada, 2014.
32 Zhang D, Shao Y X. Construction and Building Materials, 2016, 123, 516.
33 Shao Y X, Morshed A Z. Materials and Structures, 2015, 48, 307.
34 Zhang D, Shao Y X. Construction and Building Materials, 2016, 113, 134.
35 Zhang D, Cai X H, Shao Y X. Journal of Materials in Civil Engineering, 2016, 28(11).
36 Li Z, He Z, Chen X R. Materials, 2019, 12(22), 3729.
37 Zhang D, Liu T L, Shao Y X. Journal of Materials in Civil Engineering, 2020, 32(4), 04020038.
38 Morshed A Z, Shao Y X. Journal of Sustainable Cement-Based Materials, 2013, 2(2), 144.
39 Liu T L. Effect of early carbonation curing on concrete resistance to weathering carbonation. Master’s Thesis, McGill University, Canada, 2016.
40 El-Hassan H, Shao Y X, Ghouleh Z. Journal of Materials in Civil Engineering, 2013, 25(6), 799.
41 El-Hassan H, Shao Y X, Ghouleh Z. ACI Materials Journal, 2013, 110(4), 441.
42 Chen T F, Gao X J. Journal of CO2 Utilization, 2019, 34, 74.
43 Sharma D, Goyal S. European Journal of Environmental and Civil Engineering, 2022, 26(4), 1300.
44 Zhang D, Shao Y X. ACI Materials Journal, 2019, 116(3), 3.
45 Sidhu G S, Guleria H, Sharma D, et al. Journal of Sustainable Cement-Based Materials, 2023, 12(10), 1242.
46 El-Hassan H. Static and dynamic carbonation of lightweight concrete masonry units. Ph. D. Thesis, McGill University, Canada, 2012.
47 Chen T F, Gao X J. ACS Sustainable Chemistry and Engineering, 2020, 8(9), 3872.
48 ASMI. NRMCA member national and regional life cycle assessment benchmark (Industry Average) report. 2014
49 Huang H, Wang T, Kolosz B, et al. Journal of Cleaner Production, 2019, 241, 118359.
50 Skone T J, Mutchek M, Krynock M, et al. National Energy Technology Laboratory, 2022.
51 El-Hassan H, Shao Y X. Journal of Clean Energy Technologies, 2014, 2(3), 287.
52 Heijungs R, Lenzen M. The International Journal of Life Cycle Assessment, 2014, 19(7), 1445.
53 Kashef-Haghighi S, Shao Y X, Ghoshal S. Cement and Concrete Research, 2015, 67, 1.
54 Pan X Y, Shi C J, Hu X, et al. Construction and Building Materials, 2017, 154, 1087.
55 Pan X Y, Shi C J, Farzadnia N, et al. Cement and Concrete Composites, 2019, 99, 89.
56 Shi C J, Liu M, He P P, et al. Journal of Sustainable Cement-Based Materials, 2012, 1(1-2), 24.
57 Sanjuán M Á, Estévez E, Argiz C, et al. Cement and Concrete Compo-sites, 2018, 90, 257.
58 Papadakis V G. Cement and Concrete Research, 2000, 30(2), 291.
59 Lo T Y, Nadeem A, Tang W C P, et al. Construction and Building Materials, 2009, 23(3), 1306.
60 Servio P, Englezos P. Fluid Phase Equilibria, 2001, 190(1), 127.
61 Short N R, Brough A R, Seneviratne A M G, et al. Journal of Materials Science, 2004, 39(18), 5683.
62 Saetta A V, Schrefler B A, Vitaliani R V. Cement and Concrete Research, 1995, 25(8), 1703.
63 Maail R S, Umemura K, Aizawa H, et al. Journal of Wood Science, 2012, 58(1), 31.
64 Song H, Niu D T, Li C H. Journal of the Chinese Ceramic Society, 2009, 37(12), 2066 (in Chinese).
宋华, 牛荻涛, 李春晖. 硅酸盐学报, 2009, 37(12), 2066.
65 Shi C J, Wu Y Z. Resources, Conservation and Recycling, 2008, 52(8-9), 1087.
66 Han J D, Pan G H, Sun W, et al. Science China Technological Sciences, 2012, 55(3), 616.
67 Gong Z Q, Zhang Z H. China Civil Engineering Journal, 2004, 37(5), 86 (in Chinese).
龚志起, 张智慧. 土木工程学报, 2004, 37(5), 86.
68 Jang J G, LeeV H K. Cement and Concrete Research, 2016, 82, 50.
69 He Z, Wang S, Mahoutian M, et al. Journal of CO2 Utilization, 2020, 37, 309.
70 Ahmad S, Assaggaf R A, Maslehuddin M, et al. Construction and Building Materials, 2017, 136, 565.
71 García-González C A, Hidalgo A, Andrade C, et al. American Chemical Society, 2006, 45(14), 4985.
72 Cizer Ö, Balen K V, Elsen J, et al. Construction and Building Materials, 2012, 35, 741.
73 Galan I, Glasser F P, Baza D, et al. Cement and Concrete Research, 2015, 74, 68.
74 Habert G, Roussel N. Cement and Concrete Composites, 2009, 31(6), 397.
75 Gartner E. Cement and Concrete Research, 2004, 34(9), 1489.
76 Zachar J. Journal of Materials in Civil Engineering, 2011, 23(6), 789.
77 Liu M H, Zhang Y R, Wang Y F. Materials Research Innovations, 2015, 19, 9.
78 Wang T, Huang H, Hu X T, et al. Chemical Engineering Journal, 2017, 323, 320.
79 Chatterjee A K. Cement and Concrete Research. 1996, 26(8), 1213.
80 Stanek T, Sulovsky P. Cement and Concrete Research, 2015, 68, 203.
81 Li Y, Liu Y, Gong X Z, et al. Journal of Cleaner Production, 2016, 120, 221.
82 Qin L, Mao X T, Gao X J, et al. Journal of Building Materials, 2022, 25(12), 1269 (in Chinese).
秦玲, 毛星泰, 高小建, 等. 建筑材料学报, 2022, 25(12), 1269.
83 Qin L, Mao X T, Gao X J, et al. Journal of Building Materials, 2022, 25(12), 1269 (in Chinese).
秦玲, 毛星泰, 高小建, 等. 建筑材料学报, 2022, 25(12), 1269.
[1] 于晓涵, 李秀领, 马锐, 孙昊东, 苏振鹏. 基于LCA理论的装配式高延性再生微粉混凝土结构碳排放研究[J]. 材料导报, 2024, 38(23): 23070172-7.
[2] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[3] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[4] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[5] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[6] 周荷雯, 姚敦雪, 杨晴. 废弃塑料热解技术碳足迹研究进展[J]. 材料导报, 2024, 38(14): 22120220-8.
[7] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[8] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[9] 张怀志, 金鑫, 黎享, 赵天颂. 聚氨酯/环氧树脂基混合料型耐久长效道路交通标线材料组合优化研究[J]. 材料导报, 2023, 37(12): 21120002-13.
[10] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[11] 栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
[12] 陈文娟, 龚先政, 高峰, 刘宇, 孙博学, 李小青, 王志宏. 四川氟碳铈矿生产氧化钕的环境影响分析[J]. 材料导报, 2020, 34(Z2): 315-318.
[13] 高思雯, 龚先政, 孙博学. 典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析[J]. 材料导报, 2018, 32(22): 4022-4026.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed