Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11173-11179    https://doi.org/10.11896/cldb.19120078
  金属与金属基复合材料 |
增材制造技术环境影响及其生命周期评价的研究进展
栗卓新*, 祝静, 李红*
北京工业大学材料与制造学部,北京 100124
Research Progress on Environmental Impact and Life Cycle Assessment of Additive Manufacturing Technology
LI Zhuoxin*, ZHU Jing, LI Hong*
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 2198KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了满足不同工业领域的需求,目前已有多种利用材料沉积方法进行增材制造(AM)的技术。其中,电弧增材制造(Wire and arc additive manufacturing,WAAM)是一种发展迅速的增材制造技术,具有低能耗、低碳和低成本的优势,适合大型复杂金属零部件成型。虽然增材制造技术在材料、工艺、机械装置和系统集成方面发展快速,但对环境的影响仍未引起重视。由于不同的制造工艺所需的材料和能源差异较大,一般来讲,增材制造技术相对于传统工艺的总体优势不明显。因此,除了对增材制造技术本身以及工艺性能等方面进行研究外,还需要分析不同工艺方法对环境的影响。生命周期评价(LCA)是一种对产品、工艺或活动从原材料获取到最终处理全过程的重要环境管理评价工具,被越来越多地运用到不同材料制造工艺的分析与研究中。但LCA在增材制造领域中的应用和研究还较少,目前研究主要集中在粉末增材制造工艺的能源消耗和成本方面,在能源对环境影响以及生命周期数据清单方面还很少,尚未见到对电弧增材制造技术的环境影响及评价的报道。因此,有必要对这一领域进行更深入的研究。
本文介绍了生命周期评价的定义和技术框架,并基于生命周期评价方法,从确定目标和范围、清单分析、环境评价和结果解释四个方面,评述了电弧增材制造部件在整个生命周期中所有物质和能量对环境影响的研究现状。同时将增材制造技术与不同的工艺方法进行了对比,分析了不同增材制造技术对环境影响的特点和进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栗卓新
祝静
李红
关键词:  增材制造技术  生命周期评价  环境影响  电弧增材制造技术    
Abstract: Additive manufacturing (AM) techniques for different material deposition methods have been created to meet the needs of different industrial areas. Among them, wire and arc additive manufacturing(WAAM) is rapidly developing, which is suitable for the molding of large and complex metal parts. It has the advantages of low energy consumption, low carbon footprint and low cost. With the development of new materials, processes, machinery and systems related to additive manufacturing technology, many research issues on sustainability remain unresolved. Due to the great difference in material and energy demands of different manufacturing processes, additive manufacturing technology is generally no better than traditional processes. Therefore, besides studying the flexibility and process performance of additive manufacturing technology, prudent analyses of the environmental impact of different techniques are also necessary. Life cycle assessment (LCA), as an important environmental management tool for the whole process, or so called “cradle to grave”, of industrial products, has found increasing application in the research of different manufacturing techniques. However, the LCA of additive manufacturing technology only acquires moderate attention, most of which mainly focuses on energy and raw materials consumption. There are relatively few conclusions explaining the energy and environmental impacts, especially those based on reliable life cycle inventory, and moreover, fewer environmental impact and evaluation studies on the WAAM. Therefore, tighter integration and deeper interdisciplinary collaboration are worthful.
This paper introduces the definition and technical framework of LCA, and, based on LCA method, summarizes the research status of WAAM’s environmental impact from four aspects, i.e. goal and scope definition, inventory analysis, impact assessment and result interpretation, including all material and energy flows from raw material acquisition to end-of-life treatment. Compared with different process methods, the environmental impact characteristics of the AM are analyzed.
Key words:  additive manufacturing    life cycle assessment    environmental impact    wire and arc additive manufacturing
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TG444  
基金资助: 北京市自然科学基金项目(3202002)
通讯作者:  *zhxlee@bjut.edu.cn ; hongli@bjut.edu.cn   
作者简介:  栗卓新,北京工业大学材料与制造学部教授、博士研究生导师。1984年于天津大学获工学学士学位,1988于太原工业大学获工学硕士学位,1994年于天津大学获工学博士学位,1994—1996年在天津大学国家燃烧学重点实验室博士后流动站从事博士后研究工作,2007—2008年在英国伯明翰大学材料冶金系任高级研究员。主要研究方向:基于统计分析的焊接冶金与材料优化设计与质量控制,轻金属的精密连接,纳米热喷涂等。李红,北京工业大学材料与制造学部副教授、硕士研究生导师。2006年获北京科技大学材料加工工程专业博士学位,2006—2008年在北京工业大学材料学院做博士后研究,2012—2013年在德国多特蒙德工业大学做国家公派访问学者。2014 年起担任国际焊接学会(IIW)钎焊扩散焊专业委员会(C-XVII)软钎焊分委会副主席。主要研究方向为轻金属焊接材料和工艺、钎焊与微纳连接、异种材料精密连接等,已发表论文 70 余篇,授权国家专利 14项。
引用本文:    
栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
LI Zhuoxin, ZHU Jing, LI Hong. Research Progress on Environmental Impact and Life Cycle Assessment of Additive Manufacturing Technology. Materials Reports, 2021, 35(11): 11173-11179.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120078  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11173
1 Rejeski D, Huang Y.In: National Science Foundation Workshop Report. USA,2014.
2 Niaki M K, Torabi S A, Nonino F. Journal of Cleaner Production,2019,222,381.
3 Lifset R. Journal of Industrial Ecology,2017,21(9),6.
4 B?ckin D, Tillman A M. Journal of Cleaner Production,2019,226,977.
5 LeBourhis F, Kerbrat O, Hasco?t J Y, et al. The International Journal of Advanced Manufacturing Technology,2013,69(9?12),1927.
6 Kianian B, Larsson T C. In: ASME 2015 International Design Enginee?ring Technical Conferences and Computers and Information in Enginee?ring Conference. USA,2015,pp.1.
7 Bours J, Adzima B, Gladwin S, et al. Journal of Industrial Ecology,2017,21(S1),25.
8 Huang R, Riddle M, Graziano D J, et al. Journal of Industrial Ecology,2017,130.
9 Ngo T D, Kashani A, Imbalzano G, et al. Composites Part B: Enginee?ring,2018,143,172.
10 Wu B, Pan Z, Ding D, et al. Journal of Manufacturing Processes,2018,35,127.
11 Lee H, Lim C H J, Low M J, et al. International Journal of Precision Engineering Manufacturing?Green Technology,2017,4(3),307.
12 Peng T, Chen C. International Journal of Precision Engineering and Manufacturing?Green Technology,2018,5(1),55.
13 International standards organization, standard ISO 14040:2006, Geneva, Switzerland.
14 Curran M A. Goal and Scope Definition in Life Cycle Assessment, Springer,Netherlands,2017,pp.1.
15 Islam S, Ponnambalam S, Lam H L. Journal of cleaner production,2016,136,266.
16 Wang C B, Zhang L X, Pang M Y. Journal of natural resources,2015,30(7),1232(in Chinese).
王长波,张力小,庞明月.自然资源学报,2015,30(7),1232.
17 Crawford R H, Bontinck P A, Stephan A, et al. Journal of Cleaner Production,2018,172,1273.
18 Hauschild M Z, Huijbregts M A J. Life Cycle Impact Assessment, Sprin?ger, Netherlands,2015,pp.1.
19 Huijbregts M A, Steinmann Z J, Elshout P M, et al. The International Journal of Life Cycle Assessment,2017,22(2),138.
20 Jiang X, Li X P, Dong L L, et al. China Population Resources and Environment,2014,24(S2),188(in Chinese).
姜雪,李小平,董珑丽,等.中国人口?资源与环境,2014,24(S2),188.
21 University C. Is this the largest metal 3D part ever made? Cranfield University Press, UK,2016.
22 Gardner L, Kyvelou P, Herbert G, et al. Journal of Constructional Steel Research,2020,172,1.
23 Tang Y, Mak K, Zhao Y F. Journal of Cleaner Production,2016,137,1560.
24 Vogtl?nder J G. A practical guide to lca for students designers and business managers: Cradle?to?grave and Cradle?to?cradle, Delft Academic Press, USA,2016.
25 Ding J L. Thermo?mechanical analysis of wire and arc additive manufacturing process.Ph.D. Thesis, Cranfield University, UK,2012.
26 Busachi A, Erkoyuncu J, Colegrove P, et al. Procedia Cirp,2015,37,48.
27 Herrmann I T, Moltesen A. Journal of Cleaner Production,2015,86,163.
28 Wernet G, Bauer C, Steubing B, et al. The International Journal of Life Cycle Assessment,2016,21(9),1218.
29 Bekker A C, Verlinden J C. Journal of Ceaner Production,2018,177,438.
30 Sproesser G, Chang Y?J, Pittner A, et al. Journal of Cleaner Production,2015,108,46.
31 Sangwan K, Herrmann C, Egede P, et al. Procedia CIRP,2016,48,62.
32 Su Y, Wang L, Ma J. Mechanical Engineer,2015(5),107(in Chinese).
苏勇,王琳,马军.机械工程师,2015(5),107.
33 Sproesser G, Chang Y J, Pittner A, et al. The International Journal of Advanced Manufacturing Technology,2017,91(9?12),3503.
34 Bonifaz E A. In: International Conference on Computational Science. Po?rtugal,2019,pp.647.
35 Campatelli G, Montevecchi F, Venturini G, et al. International Journal of Precision Engineering Manufacturing?Green Technology,2019,7(1),1.
36 Mihelcic J R, Crittenden J C, Small M J, et al. Environmental Science Technology,2003,37(23),5314.
37 Arvidsson R, Tillman A M, Sandén B A, et al. Journal of Industrial Ecology,2018,22(6),1286.
38 Jackson M A, Van Asten A, Morrow J D, et al. International Journal of Precision Engineering Manufacturing?Green Technology,2018,5(4),459.
39 Wilson J M, Piya C, Shin Y C, et al.Journal of Cleaner Production,2014,80,170.
40 Salonitis K. Handbook of Sustainability in Additive Manufacturing, Muthu S S, Savalani M M, ed., Springer, Singapore,2016,pp.1.
41 Barros K. Identification of the environmental impacts contributors related to the use of Additive Manufacturing technologies. Ph.D. Thesis, Grenoble Alpes University, France,2017.
42 Kellens K, Mertens R, Paraskevas D, et al.Procedia CIRP,2017,61,582.
43 Kerbrat O, Le Bourhis F, Mognol P, et al. Handbook of Sustainability in Additive Manufacturing, Muthu S S, Savalani M M, ed.,Springer, Singapore,2016,pp.31.
44 Liu Z C, Jiang Q H, Cong W L, et al. International Journal of Environmental Science and Technology,2018,15(11),2273.
45 Stenbacka N, Choquet I, Hurtig K. In: IIW Commission IV?XII?SG212. Germany,2012,pp.1.
46 Lindemann C, Jahnke U, Moi M, et al. In: 23th Annual International Solid Freeform Fabrication Symposium?An Additive Manufacturing Confe?rence. USA,2012.
47 Busachi A, Erkoyuncu J, Colegrove P, et al. CIRP Journal of Manufacturing Science Technology,2017,19,117.
48 Liberini M, Astarita A, Campatelli G, et al.Procedia Cirp,2017,62,470.
49 Peng T, Xu S, Zhang H, et al. Rapid Prototyping Journal,2018,24(9),1428.
50 Baumers M, Dickens P, Tuck C, et al. Technological Forecasting Social Change,2016,102,193.
51 Ding D, Pan Z, Cuiuri D, et al. The International Journal of Advanced Manufacturing Technology,2015,81(1?4),465.
52 Filippov A, Fortuna S, Gurianov D, et al. In: 4th International Workshop on Accelerator Radiation Induced Activation. Sweden,2017,pp.42.
53 Kafara M, Suchting M, Kemnitzer J, et al. Procedia Manufacturing,2017,8,223.
54 Faludi J, Bayley C, Bhogal S, et al. Rapid Prototyping Journal,2015,21(1),14.
55 Aramcharoen A, Mativenga P T. Journal of Cleaner Production,2014,78,63.
56 Montevecchi F, Grossi N, Takagi H, et al. Procedia Cirp,2016,46,476.
57 Zhai Y. Early cost estimation for additive manufacture. Master's thesis, Cranfield University, UK,2012.
58 Guo Y, Liu H C, Guo B. Computer Integrated Manufacturing Systems,2014,20(5),1141(in Chinese).
郭焱,刘红超,郭彬.计算机集成制造系统,2014,20(5),1141.
59 Lorente D B, Mandil G, Svecova L, et al. Lithium Process Chemistry, Chagnes A, ed., Elsevier, Netherlands,2015,pp.269.
60 Bekker A C, Verlinden J C, Galimberti G. In: 27th Annual International Solid Freeform Fabrication Symposium. USA,2016,pp.406.
61 Peng T, Kellens K, Tang R, et al. Additive Manufacturing,2018,21,694.
62 Faludi J, Cline?Thomas N, Agrawala S, et al. The Next Production Revolution, implications for government and business, OECD, ed., Orga?nization for Economic Co?operation and Development, USA,2017,pp.171.
63 Rejeski D, Zhao F, Huang Y. Additive Manufacturing,2018,19,21.
64 Kellens K, Baumers M, Gutowski T G, et al. Journal of Industrial Ecology,2017,21(S1),49.
65 Ford S, Despeisse M. Journal of Cleaner Production,2015,7,1.
[1] 陈文娟, 龚先政, 高峰, 刘宇, 孙博学, 李小青, 王志宏. 四川氟碳铈矿生产氧化钕的环境影响分析[J]. 材料导报, 2020, 34(Z2): 315-318.
[2] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[3] 高思雯, 龚先政, 孙博学. 典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析[J]. 材料导报, 2018, 32(22): 4022-4026.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed