Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 395-401    https://doi.org/10.11896/cldb.201903004
  材料与可持续发展(二)--材料绿色制造与加工* |
石墨烯在水环境中的转化和降解行为研究进展
马李璇1, 李凯1, 宁平1, 梅毅2, 王驰2, 孙鑫1
1 昆明理工大学环境科学与工程学院,昆明 650000
2 昆明理工大学化学工程学院,昆明 650000
Transformation and Degradation Behavior of Graphene in WaterEnvironment: a Review
MA Lixuan1, LI Kai1, NING Ping1, MEI Yi2, WANG Chi2, SUN Xin1
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650000
2 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650000
下载:  全 文 ( PDF ) ( 1562KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着石墨烯的大量生产和广泛应用,向水环境中释放的石墨烯类垃圾和副产物与日俱增,从而带来不良的生态效应,极大地增加了石墨烯在环境和人体中的暴露概率。与此同时,石墨烯的生态毒性和环境效应引起了研究者的重视。石墨烯可以进入藻类、鼠内引起氧化应激反应,可以进入细胞与DNA及蛋白质等生物大分子物质相互作用,对生物体产生一定的毒性。此外,石墨烯具有巨大的比表面积和强烈的π电子活性,对有机污染物具有良好的吸附性能,进而对水环境中的有毒有害物质产生富集作用,改变污染物的迁移、转化和生态风险。
研究发现,石墨烯在水环境中主要以团聚的形态存在,具有生物难降解性和强烈的疏水性。其衍生物氧化石墨烯在水体中能形成稳定的悬浮物,具有长期迁移性和亲水性的特点。这些特点使得不同形态的石墨烯在外界环境的作用下发生相互转化,甚至降解,导致它的理化性质、迁移性、吸附能力发生改变。这种改变会影响石墨烯的其他环境行为如迁移归趋、对环境污染物的吸附性能以及生态毒性等,因此研究水环境中石墨烯的转化和降解对评价其环境风险具有重要意义。外界环境如水体理化性质,化学、光热、生物介质与石墨烯的作用机制是近年来研究的重点。通过研究环境介质对石墨烯的结构性能和活性的改变,可以为分析石墨烯在水体中的生态效应的动态变化及其与有机污染物之间的相互作用提供理论基础。水环境中的pH值、盐溶液类型、离子强度、溶解性有机质等因素对石墨烯的聚合状态有不同程度的影响。尤其是溶解性有机质,它既可以通过空间位阻效应促进石墨烯的分散,又可以通过缠绕、交联促进石墨烯的团聚,进一步增加了研究石墨烯的转化和降解机制的难度。石墨烯在光照作用下产生的活性自由基是其结构性质变化的主要原因,而石墨烯与微生物的作用机制主要是酶促氧化。
本文就石墨烯的光转化、热转化、化学转化及生物降解的过程和原理进行了综述,分析了影响石墨烯在水环境中转化和降解的因素及转化前后的环境效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马李璇
李凯
宁平
梅毅
王驰
孙鑫
关键词:  石墨烯  转化  生物降解  环境影响    
Abstract: With the mass production and extensive applications of graphene, the graphene wastes and by-products are inevitably released into water environment, which brings about harmful ecological effect and enormously raises the exposure probability of graphene in the environment and human body. Therefore, the ecological toxicity and environmental effects of graphene have aroused wide attention from researchers. Graphene can get access to algae, mice, and induce the oxidation stress. It can also enter cells and interact with biological macro-molecules like DNA and protein, producing certain toxicity to living organisms. Besides, owing to the large specific surface area and strong π electron activity, graphene exhibits favorable adsorption performance for organic pollutants, which makes toxic or harmful substances in water environment enriched on graphene, and further changes the migration, transformation and ecological risk of pollutants.
It has been found that graphene mainly exists in agglomerated form in water environment, and shows biodegradability and strong hydrophobicity. While, its derivative, graphene oxide, can form a stable suspension in water, and presented long-term mobility and hydrophilicity. These features enable graphene in different forms undergo mutual transformation even degradation under the action of the external environment, resulting in changes of its physicochemical properties, mobility, and adsorption capacity. These changes will further affect other environmental behaviors of graphene such as migration trend, adsorption of environmental pollutants, and ecological toxicity. Therefore, it is of great significance to study the transformation and degradation of graphene for evaluating its environmental risk in water environment.In resent years, the mechanism between graphene and external conditions, such as physical and chemical properties of water, and chemical, optothermal, biological media has become the focus of research. By studying the changes of the structure and activity of graphene in environmental media, a theoretical reference can be provided for the analysis of dynamic changes of the ecological effects of graphene and their interactions with organic pollutants. Factors like pH, salt solution type, ionic strength, dissolved organic matter (DOM) in water environment affect the polymerization state of graphene in different degree. Especially, DOM can not only promote the dispersion of graphene through steric hindrance, but also promote the agglomeration of graphene by winding and cross-linking, which makes it more difficult to study the mechanism of transformation and degradation of graphene. The main reason for the change of structure and properties of graphene is the active free radical produced by graphene under light irradiation, and the mechanism of interaction between graphene and microorganisms is mainly attributed to enzymatic oxidation.
In this article, the process and mechanisms of the photo-transformation, thermal-transformation, chemical-transformation and bio-degradation of graphene are reviewed. The factors affecting the transformation and degradation of graphene in water environment and the environmental effects before and after transformation are analyzed.
Key words:  graphene    transformation    bio-degradation    environmental impact
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  O613.71  
基金资助: 国家自然科学基金(41807373)
作者简介:  马李璇,2016年6月毕业于云南民族大学,获得理学学士学位。现为昆明理工大学环境科学与工程学院硕士研究生,在李凯副教授的指导下进行研究。目前主要研究领域为石墨烯的改性及对有机污染物的吸附。李凯,昆明理工大学环境科学与工程学院副教授、博士生导师。现为昆明理工大学学科方向团队“燃煤烟气净化及资源化”团队负责人。宁平,昆明理工大学环境科学与工程学院院长,党委书记,教授,博士研究生导师。王驰,昆明理工大学化学工程学院讲师,硕士研究生导师。wangchikg@163.com
引用本文:    
马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
MA Lixuan, LI Kai, NING Ping, MEI Yi, WANG Chi, SUN Xin. Transformation and Degradation Behavior of Graphene in WaterEnvironment: a Review. Materials Reports, 2019, 33(3): 395-401.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903004  或          http://www.mater-rep.com/CN/Y2019/V33/I3/395
1 Geim A K, Novoselov K S. Nature Materials,2007,6(3),183.
2 Avouris P, Dimitrakopoulos C. Materials Today,2012,15(3),86.
3 Chowdhury S M, Lalwani G, Zhang K, et al. Biomaterials,2013,34(1),283.
4 Lanphere J D. Environmental Engineering Science,2014,31(7),350.
5 Geim A K. Science,2009,324(5934),1530.
6 Chen Y, Yang R T, Tsamatsoulis D, et al. Chemical Physics Letters,1998,287(1-2),53.
7 Koskinen P, Malola S, Hannu Häkkinen. OALib Journal,2009,80(7),1956.
8 Arvidsson R, Molander S, Sandén B A. Human & Ecological Risk Assessment: An International Journal,2013,19(4),873.
9 Kim S, Zhou S, Hu Y, et al. Nature Materials,2012,11(6),544.
10 Williams G, Seger B, Kamat P V. ACS Nano,2008,2(7),1487.
11 Kim S R, Parvez M K, Chhowalla M. Chemical Physics Letters,2009,483(1-3),124.
12 Akhavan O, Abdolahad M, Esfandiar A, et al. Journal of Physical Chemistry C,2010,114(30),12955.
13 Shen J, Shi M, Yan B, et al. Nano Research,2011,4(8),795.
14 Moon G H, Park Y, Kim W, et al. Carbon,2011,49(11),3454.
15 Mohamed R. Desalination & Water Treatment,2012,50(1-3),147.
16 Wang F L. Effect of simulated sunlight on the transformation, adsorption and photochemical behaviors of graphene oxide. Master’s thesis, Nankai University, China,2015(in Chinese).
王方鲁.模拟日光对氧化石墨烯转化、吸附和光化学行为的影响研究.硕士学位论文,南开大学,2015.
17 Yang W D, Li Y R, Lee Y C. Applied Surface Science,2016,380,249.
18 Zhu Y, Murali S, Stoller M D, et al. Carbon,2010,48(7),2118.
19 Fan X, Peng W, Li Y, et al. Advanced Materials,2008,20(23),4490.
20 Fan Z, Wang K, Wei T, et al. Carbon,2010,48(5),1686.
21 Fan Z J, Kai W, Yan J, et al. ACS Nano,2011,5(1),191.
22 Zhao J, Wang Z, White J C, et al. Environmental Science & Technology,2014,48(17),9995.
23 Fu H, Qu X, Chen W, et al. Environmental Toxicology & Chemistry,2014,33(12),2647.
24 Wang F F. Transformation and environmental effects of common reducing agents on carbon nanomaterials in water environment. Ph.D. Thesis, Nankai University, China,2016(in Chinese).
王凡凡,水环境中常见还原剂对碳纳米材料的转化及环境效应.博士学位论文,南开大学,2016.
25 Zhao Y, Allen B L, Star A. The Journal of Physical Chemistry A,2011,115(34),9536.
26 Chen S L. The mechanism of different graphene-based nanomaterials on the activity of horseradish peroxidase. Master’s thesis, Nankai University, China,2015(in Chinese).
陈思龙.石墨烯类材料对辣根过氧化物酶活性的影响机制研究.硕士学位论文,南开大学,2015.
27 Zhang K, Ding C M, Liu H, et al. Chemical Journal of Chinese Universities,2014,35(10),2201(in Chinese).
张凯,丁春梅,刘欢,等.高等学校化学学报,2014,35(10),2201.
28 Gurunathan S, Han J W, Eppakayala V, et al. Journal of Nanoscience & Nanotechnology,2013,13(3),2091.
29 Wang J, Wang D, Liu G, et al. Journal of Chemical Technology & Biotechnology,2014,89(5),750.
30 Zhang M, Yang M, Bussy C, et al. Nanoscale,2015,7(7),2834.
31 Ren W J, Teng Y. Chinese Journal of Applied Ecology,2014,25(9),2723(in Chinese).
任文杰,滕应.应用生态学报,2014,25(9),2723.
32 Shieh Y T, Liu G L, Wu H H, et al. Carbon,2007,45(9),1880.
33 Chowdhury I, Duch M C, Mansukhani N D, et al. Environmental Science & Technology,2013,47(12),6288.
34 Yang Z, Yan H, Yang H, et al. Water Research,2013,47(9),3037.
35 Hou W C, Chowdhury I, Goodwin D G, et al. Environmental Science & Technology,2015,49(6),3435.
36 Lü X H,Chen B Y,Zhu X S. China Environmental Science,2016,36(11),3348.
37 Hou Y. Effect of NO3- on the photochemical transformation behaviors of graphene oxide in aqueous environment. Master’s thesis, Nankai University, China,2016(in Chinese).
侯艳.NO3-对水环境中氧化石墨烯光化学转化的影响研究.硕士学位论文,南开大学,2016.
38 Wang K, Jing R, Song H, et al. Nanoscale Research Letters,2011,6(1),8.
39 Qu G, Zhang C, Yuan L, et al.Nanoscale,2012,4(7),2239.
40 Akhavan O, Ghaderi E. Carbon,2012,50(5),1853.
41 Zhang P H. The toxicity study of graphene oxide and other manufactured nanomaterials on sediment invertebrate(Tubifex tubifex) and mammalian cell lines (Hepa cell and PC12 cell). Master’s thesis, University of Chinese Academy of Sciences, China,2016(in Chinese).
张盼红.氧化石墨烯等人工纳米材料对底栖动物(Tubifex tubifex) 和哺乳动物细胞系(Hepa细胞和PC12细胞)的毒性研究.硕士学位论文,中国科学院大学,2016.
42 Qi Z, Hou L, Zhu D, et al. Environmental Science & Technology,2014,48(17),10136.
43 Wang F, Zhu D, et al. Environmental Pollution,2015,196,371.
44 Gao Y, Li Y, Zhang L, et al. Journal of Colloid & Interface Science,2012,368(1),540.
45 Tang Y L, Guo H G, Xiao L, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2013,424(17),74.
46 Miao Y, Guo X T, Song X M, et al. Journal of Agro-Environment Science,2017,36(1),183.
47 Yue F N, Luo S M, Zhang C D.Chinese Journal of Applied Ecology,2013,24(2),589.
48 Wang Z, Gao Y, Wang S, et al. Environmental Science & Pollution Research International,2016,23(11),10938.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 卢勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展[J]. 材料导报, 2019, 33(9): 1455-1461.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[7] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[8] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[9] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[10] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[11] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[12] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[13] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[14] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[15] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed