Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 230-233    https://doi.org/10.11896/cldb.17110292
  无机非金属及其复合材料 |
PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术
王胜涛1,2, 卢维尔1,3, 王桐1, 夏洋1,4
1 中国科学院微电子研究所微电子仪器设备研究中心,北京 100029
2 北京交通大学理学院,北京100044
3 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029
4 中国科学院大学,北京 101407
An Improved Copper Etching Method that Involves PMMA/PVA Dual Support Membranes and Serves to Transfer Graphene
WANG Shengtao1,2, LU Weier1,3, WANG Tong1, XIA Yang1,4
1 Microelectronic Instrument and Equipment Research Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2 College of Science, Beijing Jiaotong University, Beijing 100044
3 Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
4 University of Chinese Academy of Sciences, Beijing 101407
下载:  全 文 ( PDF ) ( 3052KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯具有高载流子迁移率、高热导率、高力学强度等独特性能,可应用于微电子器件、生物传感器、燃料电池、储能器件等,在许多领域拥有广阔的发展前景。如何转移得到少残胶、无破损的石墨烯是其在电子器件中应用必须解决的问题。常规的基于铜刻蚀法的石墨烯转移技术存在因聚甲基丙烯酸甲酯(PMMA)溶解不彻底、残留在石墨烯表面而造成污染的不足。鉴于此,本工作提出了PMMA/PVA双支撑膜辅助铜刻蚀法,即在铜刻蚀法中引入高水溶性的聚乙烯醇(PVA,醇解度98%)作为高强度PMMA和石墨烯之间的阻隔层,构成双支撑膜。光学显微镜(OM)、拉曼(Raman)光谱及电学性能测试的结果表明,该方法转移得到的石墨烯残胶少、表面洁净,具有高的结晶特性,并且其背栅场效应晶体管(BGFET)表现出良好的载流子迁移率。此外,该方法操作简便,同时还是一种潜在的用于多种二维材料转移的普适技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王胜涛
卢维尔
王桐
夏洋
关键词:  石墨烯转移  聚乙烯醇(PVA)  残胶  铜刻蚀法  聚甲基丙烯酸甲酯(PMMA)  支撑膜    
Abstract: Graphene has been regarded as a promising material with wide applications in microelectronic devices, biosensors, fuel cells and energy sto-rage devices owing to its unique properties, such as high carrier mobility, high thermal conductivity and high mechanical strength. How to transfer graphene onto relevant substrates while minimising resin residues and cracks deserves is a crucial point for fabricating electronic devices using graphene. The conventional graphene transfer technology based on copper etching method has been plagued by the defect of surface pollution resulting from the unresolved and remained PMMA. We herein proposed an improved copper etching method, i.e. PMMA/PVA dual support membranes method, by indroducing a layer of polyvinyl alcohol (PVA,98% alcoholysis) with high water solubility to serve as the barrier layer between PMMA (providing high strength) and graphene. According to the results of optical microscopy (OM), Raman spectroscopy and electrical properties measurement, the transferred graphene with less residual, clean surface, high crystallinity and satisfactory back gate field effect transistor (BGFET) carrier mobility can be obtained through this improved copper etching method. Moreover, this method also has the advantages of both simple operation and potential universality for the transfer of other two-dimensional materials.
Key words:  graphene transfer    polyvinyl alcohol (PVA)    resin residue    copper etching method    polymethyl methacrylate (PMMA)    support membrane
                    发布日期:  2019-01-31
ZTFLH:  O474.1  
基金资助: 基金项目:国家自然科学基金青年基金(61604175;61427901)
作者简介:  王胜涛,2018年6月毕业于北京交通大学,获得工程硕士学位。于2017年3月至2018年3月在中国科学院微电子研究所联合培养学习,主要从事二维材料和光学元件领域的研究。卢维尔,中国科学院微电子研究所,副研究员。luweier@ime.ac.cn
引用本文:    
王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
WANG Shengtao, LU Weier, WANG Tong, XIA Yang. An Improved Copper Etching Method that Involves PMMA/PVA Dual Support Membranes and Serves to Transfer Graphene. Materials Reports, 2019, 33(2): 230-233.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17110292  或          http://www.mater-rep.com/CN/Y2019/V33/I2/230
1 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696),666.
2 Castro Neto A H. Physics World,2006,19(11),33.
3 Zhang Y, Tan Y W, Stormer H L, et al. Nature,2005,438(7065),201.
4 Balandin A A, Ghosh S, Bao W, et al. Nano Letters,2008,8(3),902.
5 Novoselov K S, Fal V I, Colombo L, et al. Nature,2012,490(7419),192.
6 Ren W, Cheng H M. Nature Nanotechnology,2014,9(10),726.
7 Du Y, Ji T Z, Zhang J Q, et al. Journal of Aeronautical Materials,2013,33(1),68(in Chinese).
杜彦,季铁正,张教强,等.航空材料学报,2013,33(1),68.
8 He D, Shen L, Zhang X, et al. AICHE Journal,2014,60(8),2757.
9 Yi P, Zhang H, Shi D, et al. Advanced Materials,2010,21(27),2777.
10 Zou Z Y, Dai B Y, Liu Z F. Science China: Chemistry,2013(1),1(in Chinese).
邹志宇,戴博雅,刘忠范.中国科学:化学,2013(1),1.
11 Chen M, Yan Y, Zhang X F, et al. Journal of Aeronautical Materials,2015,35(2),1(in Chinese).
陈牧,颜悦,张晓锋,等.航空材料学报,2015,35(2),1.
12 Zhang Z Y, Men C L, Cao J, et al. Materials Review A: Review Papers,2017,31(5),130(in Chinese).
张自元,门传玲,曹军,等.材料导报:综述篇,2017,31(5),130.
13 Lin Y C, Lu C C, Yeh C H, et al. Nano Letters,2012,12(1),414.
14 Suk J W, Lee W H, Lee J, et al. Nano Letters,2013,13(4),1462.
15 Her M, Beams R, Novotny L. Physics Letters A,2013,377(21-22),1455.
16 Yang X, Peng H, Xie Q, et al. Journal of Electroanalytical Chemistry,2013,688(4),243.
17 Ngoc H V, Qian Y T, Han S K, et al. Scientific Reports,2016,6,33096.
18 Wu J X, Xu H, Zhang J. Acta Chimica Scinica,2014,72(3),301(in Chinese).
吴娟霞,徐华,张锦.化学学报,2014,72(3),301.
19 Zhang Q H, Han J H, Feng G Y, et al. Acta Physica Sinica, 2012,61(21),000260(in Chinese).
张秋慧,韩敬华,冯国英,等.物理学报,2012,61(21),000260.
20 Thomsen C, Reich S. Physical Review Letters,2000,85,5214.
21 Tao L, et al. The Journal of Physical Chemistry C,2012,116,24068.
22 Wei D, et al. Nano Letters,2009,9,1752.
23 Lin Y M, Jenkins K A, Valdes-Garcia A, et al. Nano Letters,2008,9(1),422.
24 Kim S, Nah J, Jo I, et al. Applied Physics Letters,2009,94(6),062107.
25 Lee H B, Bae C W, Duy L T, et al. Advanced Materials,2016,28,3152.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed