Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 225-229    https://doi.org/10.11896/cldb.201902005
  无机非金属及其复合材料 |
Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究
莫晓华1, 蒋卫卿2
1 广西民族大学理学院,电离层观测与模拟重点实验室,南宁 530006
2 广西大学物理科学与工程技术学院,广西电化学能源材料重点实验室培育基地,南宁 530004
Dehydrogenation Characteristics of Fe-, Co- and Ni-doped LiBH4: a Comparative First-Principles Study
MO Xiaohua1, JIANG Weiqing2
1 Key Laboratory for Ionospheric Observation and Simulation, College of Science, Guangxi University for Nationalities, Nanning 530006
2 Guangxi Key Laboratory for Electrochemical Energy Materials, School of Physical Science & Technology, Guangxi University, Nanning 530004
下载:  全 文 ( PDF ) ( 2793KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作旨在借助基于密度泛函理论的第一性原理计算来考察过渡金属元素Fe、Co、Ni掺杂LiBH4的放氢性能。研究表明,Fe、Co、Ni掺杂有效提高了LiBH4的放氢能力,这与掺杂体系B-H共价作用及Li-B/H离子作用的减弱,尤其是Fe/Co/Ni-B键的形成有关。体系Li7MB8H32(M=Li、Fe、Co、Ni)的氢解离能与中心金属M的电负性负相关,即金属M的电负性越高,体系的氢解离能越小。与Fe、Co掺杂体系相比,具有较低金属占位能及较小氢解离能的Ni掺杂体系表现出良好的放氢特性。本研究从模拟计算的角度证实,利用高电负性金属(相对Li)与LiBH4复合是实现LiBH4“失稳”的一种有效方式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
莫晓华
蒋卫卿
关键词:  第一性原理计算  金属硼氢化物  硼氢化锂  放氢性能  过渡金属元素掺杂    
Abstract: This work involves a comparative first-principles calculation based on the density functional theory in order to provide a new insight into dehydrogenation characteristics of the transition metal (Fe, Co, Ni) doped LiBH4. Results showed that Fe, Co or Ni doping all can effectively improve the dehydrogenation performance of LiBH4 due to the weaker covalent bonding interaction between B-H and ionic bonding interaction between Li-B/H, especially the formation of Fe/Co/Ni-B bonds. For Li7MB8H32 (M=Li, Fe, Co, Ni) systems considered here, dehydrogenation energies are negatively correlated with electronegativity of metal M, i.e. an increase in electronegativity of metal M leads to a decrease of the system’s dehydrogenation energy. Compared to Fe- and Co-doped systems, Ni-doped system, which has relatively low occupation energy and dehydrogenation energy according to the calculation, displays a satisfactory dehydrogenation performance. Our work has indicated from the perspective of computational simulation that combining LiBH4 with a metal element more electronegative than Li is an effective approach to the destabilization of LiBH4.
Key words:  first-principles calculation    metal borohydride    lithium borohydride    dehydrogenation performance    transitional metal doping
                    发布日期:  2019-01-31
ZTFLH:  O641.4  
基金资助: 基金项目:国家自然科学基金(51401056;51661002);广西自然科学基金(2015GXNSFAA139259;2018GXNSFAA138189)
作者简介:  莫晓华,广西民族大学副教授。2012年北京大学空间物理专业博士毕业,主要从事电离层及固态储氢材料研究。蒋卫卿,广西大学研究员。2010年广西大学化学工艺专业博士毕业,主要从事固态储氢材料及镍氢电池电极材料研究。wqjiang@gxu.edu.cn
引用本文:    
莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
MO Xiaohua, JIANG Weiqing. Dehydrogenation Characteristics of Fe-, Co- and Ni-doped LiBH4: a Comparative First-Principles Study. Materials Reports, 2019, 33(2): 225-229.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902005  或          http://www.mater-rep.com/CN/Y2019/V33/I2/225
1 Züttel A, Rentsch S, Fischer P, et al. Journal of Alloys and Compounds,2003,356-357,515.
2 Liu H Z, Wang X H, Zhou H, et al. International Journal of Hydrogen Energy,2016,41(47),22118.
3 Ma Y F, Li Y, Liu T, et al. Journal of Alloys and Compounds,2016,689,187.
4 Züttel A, Wenger P, Rentsch S, et al. Journal of Power Sources,2003,118(1-2),1.
5 Orimo S, Nakamori Y, Kitahara G, et al. Journal of Alloys and Compounds,2005,404-406,427.
6 Yu X B, Grant D M, Walker G S. The Journal of Physical Chemistry C,2009,113(41),17945.
7 Liu Y F, Zhang Y, Zhou H, et al. International Journal of Hydrogen Energy,2014,39(15),7868.
8 Nakamori Y, Miwa K, Ninomiya A, et al. Physical Review B,2006,74(4),045126.
9 Nakamori Y, Li H W, Kikuchi K, et al. Journal of Alloys and Compounds,2007,446-447,296.
10 Miwa K, Ohba N, Towata S, et al. Journal of Alloys and Compounds,2005,404-406,140.
11 Jiang W Q, Cao S L. International Journal of Hydrogen Energy,2017,42(9),6181.
12 Li H W, Orimo S, Nakamori Y, et al. Journal of Alloys and Compounds,2007,446-447,315.
13 Fang Z Z, Kang X D, Wang P, et al. Journal of Alloys and Compounds,2010,491(1-2), L1.
14 Mo X H, Jiang W Q. Journal of Alloys and Compounds,2018,735,668.
15 Zhang B J, Liu B H. International Journal of Hydrogen Energy,2010,35(14),7288.
16 Segall M D, Lindan P J D, Probert M J, et al. Journal of Physics: Condensed Matter,2002,14,2717.
17 Perdew J P, Wang Y. Physical Review B,1992,45(23),13244.
18 Fischer T H, Almlöf J. The Journal of Physical Chemistry,1992,96(24),9768.
19 Soulié J P, Renaudin G, Cerný R, et al. Journal of Alloys and Compounds,2002,346(1-2),200.
20 Zhang Y S, Wang Y L, Michel K, et al. Physical Review B,2012,86(9),094111.
21 Zhang Y H, Ding H, Liu C, et al. International Journal of Hydrogen Energy,2013,38(31),13717.
22 Fukai Y. The metal-hydrogen system. Springer-Verleg, Berlin,1993.
23 Shi B, Song Y. International Journal of Hydrogen Energy,2013,38(15),6417.
24 Song Y, Guo Z X, Yang R. Physical Review B,2004,69(9),094205.
25 Pauling L. The nature of the chemical bonds,3rd ed. Ithaca, NY: Cornell University Press,1960.
26 Zhang R J, Wang Y M, Chen D M, et al. Acta Materialia,2006,54(2),465.
27 Mo X H, Jiang W Q, Cao S L. Results in Physics,2017,7,3236.
28 Wang H P, Wang X M, Ge F F, et al. Physica B,2010,405(7),1792.
[1] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed