Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 220-224    https://doi.org/10.11896/cldb.201902004
  无机非金属及其复合材料 |
CuO掺杂对钇钡铜氧陶瓷电性能的影响
周宏明1,2, 王博益1, 李荐1,2, 程名辉1
1 中南大学材料科学与工程学院,长沙 410083
2 湖南省正源储能材料与器件研究所,长沙 410083
Effect of CuO Doping on Electrical Properties of YBCO Ceramics
ZHOU Hongming1,2, WANG Boyi1, LI Jian1,2, CHENG Minghui1
1 School of Materials Science and Engineering,Central South University,Changsha 410083
2 Hunan Zhengyuan Institute for Energy Storage Materials and Devices,Changsha 410083
下载:  全 文 ( PDF ) ( 3665KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用传统固相烧结法制备的Y1Ba2Cu3O7-x(YBCO)陶瓷为功能相、玻璃粉为烧结助剂、CuO为掺杂剂,制备了CuO掺杂的钇钡铜氧陶瓷。通过X射线衍射仪、扫描电镜、能谱分析仪、微欧仪和高低温交变湿热试验箱对其相组成、微观结构及电性能进行研究。研究结果表明:CuO掺杂有利于减少YBCO晶体结构中存在的氧缺陷;随CuO掺杂量从0%增加到3%,陶瓷致密度逐渐增加,电阻率明显降低;CuO掺杂量大于3%后,陶瓷致密度逐渐下降,电阻率也明显升高;随CuO掺杂量增加,陶瓷的电阻温度系数逐渐由负向正偏移,电阻温度系数值逐渐减小。当CuO掺杂量为3%时,样品的综合电性能最佳:电阻率为1.55×10-4 Ω·m,电阻温度系数为-1 470×10-6 /℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宏明
王博益
李荐
程名辉
关键词:  钇钡铜氧陶瓷  氧化铜掺杂  致密度  电阻率  电阻温度系数    
Abstract: Based on traditional solid-phase sintering method, three elements, Y1Ba2Cu3O7-x (YBCO) ceramics as functional phase, glass powder as sintering aids and copper(Ⅱ) oxide (CuO) doping as dopant, can be made into the product—the CuO doped YBCO ceramics. Its microstructure, phase composition and electrical properties have been studied by SEM, XRD, EDS, micro ohm instrument and high temperature alternating humidity test chamber. The study has found that doping CuO can reduce the oxygen defects in the crystal structure of YBCO; as the CuO content increases from 0% to 3%, the ceramic density increases gradually while the resistivity decreases obviously; as the content of CuO is more than 3%, the ceramic density decreases gradually while the resistivity increases obviously; with the increase of CuO content, temperature coefficient of resistance (TCR) shifts from negative to positive gradually, and the TCR is becoming smaller and smaller; when the doping amount of CuO is 3%, the sample has the best comprehensive electrical properties—the resistivity is 1.55×10-4 Ω·m and the resistance temperature coefficient is -1 470×10-6 /℃.
Key words:  yttrium barium copper oxide    copper(Ⅱ) oxide doping    relative density    resistivity    temperature coefficient of resistance
                    发布日期:  2019-01-31
ZTFLH:  TM283  
基金资助: 清远市科技计划项目(2015D009);清远市清城区科技计划项目(2015B04)
作者简介:  周宏明,中南大学材料科学与工程学院,副教授,博士研究生导师。2004年毕业于中科院过程与工程研究所,化学工艺博士学位。长期从事锂电池材料、功能陶瓷材料及表面处理方面的研发工作,在国内外核心期刊上发表学术论文80余篇,被SCI他引240余次。申请国家发明专利20余项,其中获授权15项。李荐,冶金学博士、材料学博士后、教授、博士研究生导师。ziliao2000@126.com
引用本文:    
周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
ZHOU Hongming, WANG Boyi, LI Jian, CHENG Minghui. Effect of CuO Doping on Electrical Properties of YBCO Ceramics. Materials Reports, 2019, 33(2): 220-224.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902004  或          http://www.mater-rep.com/CN/Y2019/V33/I2/220
1 Iida K, Badu N H, Shi Y, et al. Superconductor Science Technology,2005,18(11),1421.
2 Wei Bo, Lv Zhe, Huang Xiqiang, et al. Journal of the Europen Society,2006,26(13),2827.
3 Yang Deli. The molecular sieve and oxygen permeation membrane stu-dies—The fundamental studies on oxygen diffusioon characteristics, application, substitituton and doping of Y1Ba2Cu3O7-x.Ph. D. thesis, Zhengzhou University,China,2003(in Chinese).
杨德利.Y1Ba2Cu3O7-x氧扩散特性、应用及掺杂替代的基础研究—分子筛透氧膜研究.博士学位论文,郑州大学,2003.
4 Takenaka T, Nagata H, Hiruma Y, et al. Journal Electroceramics,2007,19(4),259.
5 Cooper J R, Obertelli S D, CarringtonA, et al. Physical Review B,1991,44,12086.
6 Awana V P S, Malik S K, Yelon W B. Physica C Superconductivity,1996,262(3-4),272.
7 Hsiang H, Fan L,Cheng H. Journal of Alloys and Compounds,2015,650,835.
8 Qin J, Zhang W, Liu Z, er al.International Journal of Modern Physics B,2015,29(10),1540027.
9 Zhang Feijin, Zhu Xiaoyun. Materials Review A: Review papers,2013,14(2),81(in Chinese).
张飞进,朱晓云.材料导报:综述篇,2013,14(2),81.
10 Kanoun O. IEEE Transactions on Instrumentation and Measurement,2000,49(4),901.
11 Hu Junsui, Tang Zhenlan, Du Yongguo, et al. Precious Metals,2007,28(2),1(in Chinese).
胡君遂,唐珍兰,堵永国,等.贵金属,2007,28(2),1.
12 Du Yongguo, Zhang Weijun, Hu Junsui, et al. Hybrid Microelectronic Technology,2003,14(3),109(in Chinese).
堵永国,张为军,胡君遂,等.混合微电技术,2003,14(3),109.
13 堵永国,张为军,李刚,等.中国,02139895.X,2005.
14 李旭琼,骆颖,刘心宇,等.中国,201010137147.7,2010.
15 银锐明,张晓琪,银舜生.中国,200810143397.4,2008.
16 Zhang Qin. Study on heating resistance pasters of YBCO thick film. Master’s thesis, University of Electronic Science and Technology of China, China,2011(in Chinese).
张琴.YBCO厚膜发热电阻浆料研究.硕士学位论文,电子科技大学,2011.
17 Shi Yu, Liu Xinyu, Li Chuan, et al. Electronic Components and Mate-rials,2010,29(6),7.
18 Zhao Xiayan, Yuan Changlai, Huang Jinyue, et al. Electronic Components and Materials,2010,29(2),17.
19 Pathak L C. Ceramics International,2006,30(3),417.
20 Zhang Qin, Yang Chuanren, Zhang Jihua, et al. Piezoeletrics and Acoustooptics,2011,33(4),628(in Chinese).
张琴,杨传仁,张继华,等.压电与声光,2011,33(4),628.
21 Park J H, Park J G, Kim B K.Materials Research Bulletin,2002,37,305.
22 Yoo J H, Hong J I, Suh S. Sensors Actuators,1999,78,168.
23 Zang Fengming.Piezoelectrics and Acoustooptics,1998,20(5),358(in Chinese).
臧凤明.压电与声光,1998,20(5),358.
24 Park S H, Ahn C W.Japanese Journal of Applied Physics,2004,43(8B),1072
[1] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[2] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[3] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[4] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[5] 贾兴文, 张新, 马冬, 杨再富, 石从黎, 王智. 导电混凝土的导电性能及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 90-97.
[6] 李吉帅,戚文军,李亚江,黎小辉,王沛,刘建业. 选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*[J]. 材料导报编辑部, 2017, 31(10): 62-69.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed