Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 10-14    https://doi.org/10.11896/j.issn.1005-023X.2017.022.003
  材料研究 |
硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*
金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪
南昌大学光伏研究院,南昌 330031
Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes
JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang
Institute of Photovoltaics, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将电阻率为1 Ω·cm、0.1 Ω·cm、0.01 Ω·cm、0.001 Ω·cm的n型掺杂硅片以及电阻率为1 Ω·cm、0.001 Ω·cm的p型掺杂硅片球磨制成6种硅粉,并分别将其与石墨按照5∶95的质量比进行混合,用作锂离子电池负极材料并制成扣式电池,通过电化学阻抗谱和倍率性能测试来研究硅材料体电阻率和掺杂类型对锂离子电池电化学性能的影响规律。结果表明,硅材料体电阻率越低,其储锂容量越高,倍率性能越好。电阻率相同时,n型掺杂硅始终比p型掺杂硅具有更大的储锂容量和更好的倍率性能。但是,当p型掺杂硅的电阻率远低于n型掺杂硅时,p型掺杂硅电化学性能更佳。另外,0.001 Ω·cm的n型掺杂硅样品具有最佳的充放电比容量和倍率性能,其首次充放电比容量分别为457.7 mAh·g-1和543.4 mAh·g-1。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金晨鑫
徐国军
刘烈凯
岳之浩
李晓敏
汤昊
周浪
关键词:  硅/石墨负极  体电阻率  n型掺杂  p型掺杂  锂离子电池  电化学性能    
Abstract: n-Type silicon wafers with bulk electrical resistivity of 1 Ω·cm, 0.1 Ω·cm, 0.01 Ω·cm and 0.001 Ω·cm and p-type silicon wafers with bulk electrical resistivity of 1 Ω·cm and 0.001 Ω·cm were separately ball-milled to form six different types of silicon powders, which were subsequently mixed with graphite powders at a weight ratio of 5∶95 respectively in order for serving as anode materials in lithium-ion batteries (LIBs). The effects of bulk electrical resistivity and doping types of silicon materials on the anodes’ electrochemical performances in LIBs were investigated through the electrochemical impedance spectra and rate tests. The results showed that silicon with lower bulk electrical resistivity exhibits higher capacity and better rate performance. Besides, n-type doped silicon has higher capacity and better rate performance than those of p-type doped silicon with the same bulk electrical resistivity. In addition, if the bulk electrical resistivity of p-type doped silicon is much lower than that of n-type doped silicon, p-type doped silicon can perform better in electrochemical properties. The sample prepared from 0.001 Ω·cm n-type-Si wafer achieves the highest discharge and charge capacities (543.4 mAh·g-1 and 457.7 mAh·g-1, respectively) during the first cycle.
Key words:  silicon/graphite anode    bulk electrical resistivity    n-type doping    p-type doping    lithium-ion battery,electrochemical performance
                    发布日期:  2018-05-08
ZTFLH:  TM911  
基金资助: *中国博士后基金(2016M592115);江西省博士后基金(2015KY12);江西教育厅项目(150184);国家自然科学基金(61464007);江西省自然科学基金(2015BAB207055);南昌大学研究生创新专项资金项目(cx2016014)
通讯作者:  岳之浩,男,1987年生,博士,讲师,主要研究方向为硅材料及器件 E-mail:yuezhihao@ncu.edu.cn   
作者简介:  金晨鑫:男,1993年生,硕士研究生,主要研究方向为硅材料及器件 E-mail:jinchenxin777@163.com
引用本文:    
金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes. Materials Reports, 2017, 31(22): 10-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.003  或          http://www.mater-rep.com/CN/Y2017/V31/I22/10
1 Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652.
2 Li J, Daniel C, Wood D. Materials processing for lithium-ion batte-ries[J]. J Power Sources, 2011,196(5):2452.
3 Fu W L.Progress in research on materials for lithium-ion batteries[J]. Chin J Power Sources, 2009,33(9):822(in Chinese).
付文莉. 锂离子电池电极材料的研究进展[J]. 电源技术, 2009,33(9):822.
4 Liang C, Xu H H, Liang S,et al. Progress in lithium storage materials as anode for lithium-ion battery[J]. Mater Rev:Rev, 2015,29(6):9(in Chinese).
梁初, 许浩辉, 梁升,等. 锂离子电池负极储锂材料的研究进展[J]. 材料导报:综述篇, 2015,29(6):9.
5 Li R R,Wang Q T.Research progress of Si-based composite anode materials for Li-ion batteries.[J]. Mater Rev: Rev, 2014,28(5):20(in Chinese).
李瑞荣, 王庆涛. 锂离子电池硅基负极材料的研究进展[J]. 材料导报:综述篇, 2014,28(5):20.
6 Li C M, Zhang R Y, Li W S. Research progress in applications of silicon materials for lithium-ion batteries[J]. Mater Rev, 2006,20(9):34(in Chinese).
李昌明, 张仁元, 李伟善. 硅材料在锂离子电池中的应用研究进展[J]. 材料导报, 2006, 20(9):34.
7 Leblanc D, Hovington P, Kim C, et al. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles[J]. J Power Sources, 2015,299:529.
8 Gauthier M, Reyter D, Mazouzi D, et al. From Si wafers to cheap and efficient Si electrodes for Li-ion batteries[J]. J Power Sources, 2014,256(12):32.
9 Sato K, Noguchi M, Demachi A, et al. A mechanism of lithium storage in disordered carbons[J]. Science,1994,264(5158):556.
10 Ko M, Chae S, Jeong S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2014,8(8):8591.
11 Zhang Y Q, Xia X H, Wang X L, et al. Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithiumion batteries[J]. J Power Sources, 2012,213(9):106.
12 Yu C, Liu L, Jie X, et al. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium-ion batteries[J]. Adv Funct Mater, 2015,25(43):6701.
13 Bie Y, Yu J, Yang J, et al. Porous microspherical silicon composite anode material for lithium ion battery[J]. Electrochim Acta, 2015,178:65.
14 Hao Q, Zhao D, Duan H, et al. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries[J]. Nanoscale, 2015,7(12):5320.
15 Mi H W, Wu S Q, Zhu P Y, et al. Research progress on Si/C composite anode materials for lithium-ion battery[J]. Mater Rev:Rev, 2013,27(9):23(in Chinese).
米宏伟, 吴双泉, 朱培洋,等. 锂离子电池硅-碳负极材料的研究进展[J]. 材料导报:综述篇, 2013,27(9):23.
16 Long B R, Chan M K Y, Greeley J P, et al. Dopant modulated Li insertion in Si for battery anodes: Theory and experiment[J]. J Phys Chem C, 2011,115(38):18916.
17 Jossen A. Fundamentals of battery dynamics[J]. J Power Sources, 2006,154(2):530.
18 刘恩科,朱秉升,罗晋生. 半导体物理学(第7版)[M]. 北京: 电子工业出版社, 2011:109.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[5] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[6] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[7] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[8] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[9] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[10] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[11] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[12] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[13] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[14] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[15] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed