Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3712-3719    https://doi.org/10.11896/j.issn.1005-023X.2018.21.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
石墨烯/CuO锂离子电池负极材料的研究进展
王莹, 李勇, 朱靖, 赵亚茹, 李焕
江西理工大学工程研究院,赣州 341000
Advances in Graphene/CuO Composites as Anode Materials for Lithium Ion Batteries
WANG Ying, LI Yong, ZHU Jing, ZHAO Yaru, LI Huan
Engineering Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 2573KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯作为一种锂离子电池负极材料表现出优异的电化学性能,但石墨烯在充放电过程中容易团聚,导致其容量衰减特别快。而金属氧化物在充放电过程中体积膨胀大,因此其容量衰减也非常快;另外,金属氧化物的电导率低,导致其倍率性能差。将金属氧化物与石墨烯复合,两者性能互补,石墨烯可提高复合材料的电导率,缓解金属氧化物在充放电过程中的体积效应;金属氧化物可提高复合材料的储锂容量,并能阻止石墨烯在充放电过程中团聚。本文介绍了石墨烯/CuO锂离子电池负极材料的制备方法,分析了石墨烯与氧化铜及其复合材料的储锂机制,展望了石墨烯/CuO锂离子电池负极材料的应用前景,并指出了当前研究中存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王莹
李勇
朱靖
赵亚茹
李焕
关键词:  石墨烯/氧化铜  锂离子电池  负极材料  储锂机制    
Abstract: As an anode material for lithium ion batteries, graphene presents amazing electrochemical performance. Nevertheless, graphene is easy to agglomerate during charge-discharge process, which results in a sharp decrease of its capacitance. Metal oxides show large volume swell in charge and discharge process, leading to severe capacitance decay of the metal material. Besides, the low conductivity of metal oxide brings about the poor charge-discharge rate performance of the material. When the metal oxide and graphene are combined to form composite materials, they are mutually complementary in properties. Graphene can improve the electrical conductivity of the composite materials and relieve the volume variation of the metal oxide during charging and discharging. Metal oxide can enlarge the storage capacitance of composite materials and avoids the agglomeration of graphene during charging and discharging. This paper introduces the preparation method of graphene/CuO anode materials, and analyzes the mechanism of the lit-hium storage of each component and the composite materials. The application prospect of graphene/CuO anode materials for lithium ion batteries are proposed and the problems in current research are pointed out as well.
Key words:  graphene/copper oxide    lithium ion battery    anode material    lithium storage mechanism
               出版日期:  2018-11-10      发布日期:  2018-11-21
ZTFLH:  TM911  
基金资助: 国家自然科学基金(51261007; 51561007); 江西省科技厅发明专利产业化重点项目(20161BBM26036); 江西理工大学清江青年英才支持计划
作者简介:  王莹:男,1993年生,硕士研究生,研究方向为锂离子电池负极材料 E-mail:wy286320826@126.com;李勇:通信作者,男,1975年生,博士,副教授,硕士研究生导师,主要从事石墨烯及其复合材料的研究 E-mail:liyong0248@163.com
引用本文:    
王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
WANG Ying, LI Yong, ZHU Jing, ZHAO Yaru, LI Huan. Advances in Graphene/CuO Composites as Anode Materials for Lithium Ion Batteries. Materials Reports, 2018, 32(21): 3712-3719.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.005  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3712
1 Da D, Min G K, Lee J Y, et al.Green energy storage material: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries[J].Energy & Environmental Science,2009,2:818.
2 Cameán I, Lavela P, Tirado J L, et al.On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries[J].Fuel,2010,89:986.
3 Liu L, Bao S S, He H, et al.Research progress of Ni-rich ternary cathode materials for lithium ion batteries[J].Electronic Components and Materials,2017,36(12):58(in Chinese).
刘磊,包珊珊,何欢,等.锂离子电池富镍三元正极材料研究进展[J].电子元件与材料,2017,36(12):58.
4 Zhang Y L, Hu X B, Xu Y L, et al.Recent progress of Li4Ti5O12 with different morphologies as anode material[J].Acta Chimical Sinica,2013,71(10):1341(in Chinese).
张永龙,胡学步,徐云兰,等.不同形貌结构Li4Ti5O12负极材料的最新进展[J].化学学报,2013,71(10):1341.
5 Saadat S.Achieving high Li storage properties in copper oxide based hybrid anodes[D].Singapore: Nanyang Technological University,2013.
6 Lin K H, Kuo C L.Lithiation mechanisms and lithium storage capacity of reduced graphene oxide nanoribbons: A first-principles study[J].Journal of Materials Chemistry A,2017,5:4912.
7 Jiang Y.Design and fabrication of graphene based materials and their applications in anode of lithium ion batteries for high performance[D].Guangzhou: South China University of Technology,2016(in Chinese).
江宇. 石墨烯基材料构筑及其在高性能锂离子电池负极中的应用[D].广州:华南理工大学,2016.
8 Kuo S L, Liu W R, Kuo C P, et al.Lithium storage in reduced graphene oxides[J].Journal of Power Sources,2013,244:552.
9 Gao S, Zhou N, An Q, et al.Facile solvothermal synthesis of novel hetero-structured CoNi-CuO composites with excellent microwave absorption performance[J].Royal Society of Chemistry Advances,2017,7:69.
10 Zhan X, Hu Y A, Zhu A Z, et al.A novel porous CuO nanorod/rGO composite as a high stability anode material for lithium-ion batteries[J].Ceramics International,2016,42:1833.
11 Lu B, Wang H, Hu R Z, et al.Enhanced cyclic performance of SnO2-CuO-graphite nano-sheets as anode for Li-ion battery[J].Materials Letters,2016,185:9.
12 Wang Z, Chen J S, Zhu T, et al.One-pot synthesis of uniform carbon-coated MoO2nanospheres for high-rate reversible lithium sto-rage[J].Chemical Communications,2010,46:6906.
13 Murugan M, Kumar R M, Alsalme A,et al.In situ hydrothermal synthesis of graphene-CuO nanocomposites for lithium battery applications[J].Nanoscience and Nanotechnology,2016,16:317.
14 Zhang J, Wang B B, Zhou J C, et al.Preparation of advanced CuO nanowires/functionalized graphene composite anode material for lit-hium ion batteries[J].Materials,2017,72:3.
15 Mostafa Baghbanzadeh, Sre<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-1005-023X-32-21-3712"><mml:mover accent="true"><mml:mi>c</mml:mi><mml:mtext fontstyle="italic">˙</mml:mtext></mml:mover></mml:math></inline-formula>o D Škapin, Zorica Crnjak Orel, et al. A critical assessment of the specific role of microwave irradiation in the synthesis of ZnO micro- and nanostructured materials[J].Che-mistry,2012,18:5724.
16 Vadahanambi Sridhar, Ho-Hwan Chun, Hyun Park.3D functional hetero-nanostructures of vertically anchored metal oxide nanowire arrays on porous graphene substrates[J].Carbon,2014,79:330.
17 Sun L D, Weidlinger Gunther, Mariella Denk, et al.Stranski-Krastanov growth of para-sexiphenyl on Cu(110)-(2×1)O revealed by optical spectroscopy[J].Physical Chemistry Chemical Physics,2010,12:14706.
18 Zhou X Y, Zhang J, Su Q M, et al.Nanoleaf-on-sheet CuO/graphene composites: Microwave-assisted assemble and excellent electrochemical performances for lithium Ion batteries[J].Electrochimica Acta,2014,125:615.
19 Wu R, Qian X, Yu F, et al.MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials[J].Materials Chemistry,2013,1(37):11126.
20 Ji Dong, Zhou Hu, Tong Yongli, et al.Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries[J].Chemical Engineering Journal,2016,313:1623.
21 Ni Z H, Gu Z X, Wang Y X.Self-assembly technology of nano-particle driven by the micro force[J].Micronanoelectronic Technology,DOI:10.13250/j.cnki.wndz.2004.10.004.
22 Zhou J S, Ma L L, Song H H, et al.Durable high-rate performance of CuO hollow nanoparticles graphene-nanosheet composite anode material for lithium-ion batteries[J].Electrochemistry Communications,2011,13:1357.
23 Li G Y, Jing M J, Chen Z G, et al.Self-assembly of porous CuO nanospheres decorated on reduced graphene oxide with enhanced lithium storage performance[J].Royal Society of Chemistry,2017,7:10376.
24 Sun L N, Deng Q W, Li Y L, et al.Solvothermal synthesis of ternary Cu2O-CuO-RGO composites as anode materials for high perfor-mance lithium-ion batteries[J].ElectrochimicaActa,2016,222:1650.
25 Mai Y J, Wang X L, Xiang J Y, et al.CuO/graphene composite as anode materials for lithium-ion batteries[J].Electrochimica Acta,2011,56:2306.
26 Fan Z J, Yan J, Ning G Q, et al.Porous graphene networks as high performance anode materials for lithium ion batteries[J].Carbon,2013,60:538.
27 Seung-Deok Seo, Duk-Hee Lee, Jae-Chan Kim, et al.Room-tempe-rature synthesis of CuO/graphene/nanocomposite electrodes for high lithium storage capacity[J].Ceramics International,2013,39:1749.
28 Wang C.The preparation of copper oxide anode materials for lithium ion batteries and the research of electrochemical performance[D].Harbin:Harbin Institute of Technology,2015(in Chinese).
王晨. 锂离子电池CuO负极材料的制备及其电化学性能研究[D].哈尔滨:哈尔滨工业大学,2015.
29 Wang B, Wu X L, Shu C Y, et al.Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries[J].Journal of Materials Chemistry,2010,20:10661.
30 Riyaz A Dar,Gowhar A Naikoo, Pramod K Kalambate, et al.Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with macro-structured porous copper oxide[J].Electrochimica Acta,2015,163:196.
31 Lu L Q, Wang Y.Facile synthesis of graphene-supported shuttle- and urchin-like CuO for high and fast Li-ion storage[J].Electroche-mistry Communications,2012,14:82.
32 Baskaran Rangasamy, Jun Yeon Hwang, Wonbong Choi.Multi la-yered Si-CuO quantum dots wrapped by graphene for high-perfor-mance anode material in lithium-ion battery[J].Crabon,2014,77:1065.
33 Xu J M, Liu Y F, He L, et al.Facile synthesis of CuO mesocrystal/MWCNT composites as anode materials for high areal capacity lithium ion batteries[J].Ceramics International,2016,42:12027.
34 Xu M, Wang F, Ding B, et al.Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties[J].Royal Society of Chemistry Advances,2012,2(6):2240.
35 Subhalaxmi Mohapatra, Shantikumar V Nair, Dhamodaran Santhanagopalan, et al.Nanoplate and mulberry-like porous shape of CuO as anode materials for secondary lithium ion battery[J].Electrochimica Acta,2016,206:217.
36 Martin L, Martinez H, Poinot D, et al.Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries[J].Journal of Power Sources,2014,248(248):861.
37 Sahay R, Kumar P S, Aravindan V, et al.High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability[J].Journal of Physical Chemistry C,2012,116(34):18087.
38 Chen S, Zhu J W, Wang X, et al.From graphene to metal oxide nanolamellas: A phenomenon of morphology transmission[J].Ame-rican Chemical Society,2010,4(10):6212.
39 Zhou G M, Wang D W, Li F, et al.Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J].Chemistry of Materials,2010,22(18):5306.
40 Wen L, Liu C M, Song R S, et al.Lithium storage characteristics and possible applications of graphene materials[J].Acta Chimica Sinica,2014,72(3):333(in Chinese).
闻雷,刘成名,宋仁升,等.石墨烯材料的储锂行为及其潜在应用[J].化学学报,2014,72(3):333.
41 Yang J.Carbon hybrid as anode materials for super lithium ion capacitor[D].Changsha: Central South University,2010(in Chinese).
杨娟. 超级电容电池用炭类负极材料制备及性能研究[D].长沙:中南大学,2010.
42 Fan Z J, Yan J, Ning G Q, et al.Porous graphene networks as high performance anode materials for lithium ion batteries[J].Carbon,2013,60:538.
43 Novoselov K,Geim A, Moroziv S, et al.Electric field effect in ato-mically thin carbon films[J].Science,2004,306(5696):666.
44 Zhang D D, Zhan Z J.Strengthening effect of graphene derivatives in copper matrix composites[J].Journal of Alloys and Compounds,2016,654:226.
45 Wang Q, Zhao J, Shan W F, et al.CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes[J].Journal of Alloys and Compounds,2014,590:424.
46 Yang S T, Chang Y L, Wang H F, et al.Folding/aggregation of graphene oxide and its application in Cu2+ removal[J].Journal of Colloid and Interface Science,2010,351:122.
47 Ding X, Huang Z H, Shen W C, et al.Preparation and electrochemical performance of a CuO/graphene composite[J].New Carbon Materials,2013,28(3):172(in Chinese).
丁翔,黄正宏,沈万慈,等.氧化铜/石墨烯的制备及其电化学性能[J].新型炭材料,2013,28(3):172.
48 Zhang X T.Interfacial interaction and lithium storage performance of graphene/metal oxide composites[D]. Beijing: Beijing Institute of Chemical Technology,2016(in Chinese).
张小廷. 石墨烯/金属氧化物界面交互作用及其储锂性能研究[D].北京:北京化工大学,2016.
49 Alok Kumar Rai, Ly Tuan Anh, Jihyeon Gim, et al.Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery[J].Journal of Power Sources,2013,244:435.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[5] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[6] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[7] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[8] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[9] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[10] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[11] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[12] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[13] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[14] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[15] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed