Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 5-9    https://doi.org/10.11896/j.issn.1005-023X.2017.022.002
  材料研究 |
二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*
张冠群1,许州1,2,刘建雄1,杨艳蓉1,刘成1,程琪1,于晓华3
1 昆明理工大学材料科学与工程学院, 昆明 650093;
2 华南理工大学材料科学与工程学院, 广州 510640;
3 昆明理工大学固体废弃物资源化国家工程研究中心, 昆明 650093
Two step Hydrothermally Synthesized Nest like TiO2/Co3O4 Nanostructures with Good Electrochemical Performance for Lithium Ion Battery
ZHANG Guanqun1, XU Zhou1,2, LIU Jianxiong1, YANG Yanrong1,LIU Cheng1, CHENG Qi1, YU Xiaohua3
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
3 National Engineering Research Center of Waste Resource Recovery, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 622KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以TiO2粉末和NaOH为原料,在机械外力场作用下,采用水热法制备TiO2纳米线。随后将得到的TiO2纳米线与六水合硝酸钴(Co(NO3)2·6H2O)和尿素(Urea)共同水热反应制备TiO2/Co3O4纳米结构材料。分别利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池充放电测试仪和电化学工作站等,对材料的相组成、微观形貌、锂电性能和阻抗性能进行测试。结果表明,TiO2/Co3O4纳米复合材料为鸟巢状结构,其在33.5 mA/g电流密度下恒电流充放电的首次放电容量为777 mAh/g,充电容量为759 mAh/g,100次循环后的可逆容量仍保持在663 mAh/g,具有良好的循环稳定性和电化学特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张冠群
许州
刘建雄
杨艳蓉
刘成
程琪
于晓华
关键词:  锂离子电池  电化学性能  循环稳定性  鸟巢状  TiO2纳米线  TiO2/Co3O4复合材料  二次水热法    
Abstract: In this work, a TiO2/Co3O4 nanostructured materials was prepared through a hydrothermal process using cobalt(Ⅱ) nitrate hexahydrate, urea, and hydrothermally pre-synthesized (from TiO2 powders and NaOH and under mechanical stirring) TiO2 nanowires as raw materials. The composition, morphology and electrochemical performance of the product were characterized by employing X-ray diffractometer (XRD), scanning electron microscope (SEM), charging/discharging tester and electrochemical workstation. Our experiments illustrated the nest-like micromorphology, good cyclic stability and electrochemical character of this two-step hydrothermally synthesized TiO2/Co3O4 composites, as the electrode exhibited initial discharge and charge capacities of 777 mAh/g and 759 mAh/g, respectively, and a capacity retention of 663 mAh/g after 100 cycles during constant-current charge/discharge at 33.5 mA/g.
Key words:  lithium ion battery    electrochemical performance    cyclic stability    nest-like    TiO2 nanowire    TiO2/Co3O4 composite    two step hydrothermal synthesis
                    发布日期:  2018-05-08
ZTFLH:  TB332  
基金资助: *国家自然科学基金(51601081;51665022);省级人培项目(KKSY201628022);省教育厅项目(2016ZZX031)
通讯作者:  刘建雄,男,1962年生,教授,研究方向为金属材料加工E-mail:ljx5192665@163.com于晓华,男,1986年生,博士,研究方向为材料热力学E-mail:xiaohua_y@163.com   
作者简介:  张冠群:女,1991年生,硕士,研究方向为TiO2纳米结构的锂电性能E-mail:zhangguan_qun@126.com
引用本文:    
张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
ZHANG Guanqun, XU Zhou, LIU Jianxiong, YANG Yanrong,LIU Cheng, CHENG Qi, YU Xiaohua. Two step Hydrothermally Synthesized Nest like TiO2/Co3O4 Nanostructures with Good Electrochemical Performance for Lithium Ion Battery. Materials Reports, 2017, 31(22): 5-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.002  或          http://www.mater-rep.com/CN/Y2017/V31/I22/5
1 Zhang J, Gu P, Xu J, et al. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries[J]. Nanoscale, 2016,44(8):18578.
2 Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652.
3 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861):359.
4 Zhang S T, Zheng M B, Lin Z X, et al. Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium-sulfur batteries[J]. RSC Adv, 2016,46(6):39918.
5 Liu S, Jia H, Han L, et al. Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries[J]. Adv Mater, 2012,24(24):3201.
6 Ren Y, Liu Z, Robert A A, et al. Nanoparticulate TiO2(B): An anode for lithium-ion batteries[J]. Angew Chem Int Ed, 2012,51(9):2164.
7 Liu S, Wang Z, Yu C, et al. A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life[J]. Adv Mater, 2013,25(25):3462.
8 Hu L, Chen Q. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries[J]. Nanoscale, 2014,6(3):1236.
9 Li S L, Xu Q. Metal-organic frameworks as platforms for clean energy[J]. Energy Environ Sci, 2013,6(6):1656.
10 Jiang J, Li Y, Liu J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Adv Mater, 2012,24(38):5166.
11 Zhou W, Cheng C, Liu J, et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance[J]. Adv Funct Mater, 2011,21(13):2439.
12 Wang J, Yang N, Tang H, et al. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries[J]. Angew Chem Int Ed, 2013,52(25):6417.
13 Wei Z, Li R, Huang T, et al. Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes[J]. J Power Sources, 2013,238(28):165.
14 Tang Y, Wu D, Chen S, et al. Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets[J]. Energy Environ Sci, 2013,6(8):2447.
15 Kravchyk K, Prtesescu L, Bodnarchuk M, et al. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes[J]. J Am Chem Soc, 2013,135(11):4199.
16 Li W, Shang K, Liu Y, et al. A novel sandwich-like Co3O4/TiO2 composite with greatly enhanced electrochemical performance as anode for lithium ion batteries[J]. Electrochim Acta, 2015,174(9):85.
17 Mohamed M M, Asghar B H M, Muathen H A. Facile synthesis of mesoporous bicrystallized TiO2 (B)/anatase (rutile) phases as active photocatalysts for nitrate reduction[J]. Catal Commun, 2012,28(44):58.
18 Liu D, Yang Z, Wang P, et al. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes[J]. Nanoscale, 2013,5(5):1917.
19 Pei Y K, Bo Y K, Shim I B, et al. Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires[J]. ACS Nano, 2009,3(3):3143.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[3] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[4] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[5] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[6] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[7] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[8] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[9] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[10] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[11] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[12] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[13] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[14] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[15] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed