Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23080117-5    https://doi.org/10.11896/cldb.23080117
  无机非金属及其复合材料 |
热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响
杨文秀1, 王冰冰1, 俞小花1, 田林2,3, 谢刚1,2,3,*
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 昆明冶金研究院有限公司,昆明 650503
3 共伴生有色金属资源加压湿法冶金技术国家重点实验室,昆明 650503
Effect of Thermal Decomposition Temperature on Microscopic Morphology and Performance of IrO2-RuO2-SnO2/Ti Anode
YANG Wenxiu1, WANG Bingbing1, YU Xiaohua1, TIAN Lin2,3, XIE Gang1,2,3,*
1 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Kunming Metallurgical Research Institute, Kunming 650503, China
3 State Key Laboratory of Common Associated Non-ferrous Metal Resources Pressure Hydrometallurgy Technology, Kunming 650503, China
下载:  全 文 ( PDF ) ( 2635KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 湿法炼锌过程的锌电积中,对阳极的性能要求很高,完全采用贵金属涂层制备钛阳极的成本非常高昂,因此,在制备贵金属涂层钛阳极时,通常需要在涂层中添加少量的其他低成本催化金属元素,以达到合适的催化效果。本工作采用热分解法制备了IrO2-RuO2-SnO2/Ti阳极,分析了不同温度下IrO2-RuO2-SnO2/Ti阳极涂层的表面形貌、微观结构以及电化学性能。结果表明,当温度为450 ℃时,涂层表面最致密,晶粒尺寸相对较小,阳极催化活性、耐腐蚀性能最强,析氧电位低至0.882 V,有利于延长阳极的使用寿命,此时IrO2-RuO2-SnO2/Ti阳极的综合性能最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文秀
王冰冰
俞小花
田林
谢刚
关键词:  钛阳极  铱钌锡涂层  硫酸溶液  析氧催化  电化学性能    
Abstract: In the zinc electrowinning of wet zinc refining process, the performance requirements of anode is very high, and the cost of preparing titanium anode completely with precious metal coating is very high, therefore, when preparing precious metal coated titanium anode, it is usually necessary to add a small amount of other low-cost catalytic metal elements in the coating to achieve a suitable catalytic effect. In this work, IrO2-RuO2-SnO2/Ti anodes were prepared by thermal decomposition method. The surface morphology, microstructure and electrochemical properties of the IrO2-RuO2-SnO2/Ti anode coatings at different temperatures were analysed. The results showed that, when the temperature was 450 ℃, the surface of the coating is the most dense, the grain size was relatively small, the catalytic activity and corrosion resistance of the anode were the strongest, and the oxygen precipitation potential was as low as 0.882 V, which was conducive to prolonging the service life of the anode, and the comprehensive performance of IrO2-RuO2-SnO2/Ti anode was the best.
Key words:  titanium anode    iridium-ruthenium-tin coating    sulphuric acid solution    oxygen precipitation catalysis    electrochemical performance
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TQ 150.1  
基金资助: 国家自然科学基金(51774160);云南省重大科技专项(2018ZE002);云南省科技人才和平台计划项目(2017HA012);中央引导地方科技发展资金(202107AA110005)
通讯作者:  * 谢刚,昆明理工大学冶金与能源工程学院教授、博士研究生导师。1982年昆明工学院稀有金属冶金专业本科毕业,1984年在东北大学攻读硕士、博士学位,1990年获博士学位,毕业后到昆明理工大学工作至今。目前主要从事冶金与材料等领域的研究工作。发表论文160余篇,其中SCI、EI、ISTP收录40余篇;第一发明人授权专利10余项,其中国际专利2项;主持国家自然科学基金面上项目6项。 gangxie@sina.com   
作者简介:  杨文秀,2021年6月于攀枝花学院获得工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,在谢刚教授、俞小花副教授的指导下进行研究。目前主要研究领域为冶金电极材料。
引用本文:    
杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
YANG Wenxiu, WANG Bingbing, YU Xiaohua, TIAN Lin, XIE Gang. Effect of Thermal Decomposition Temperature on Microscopic Morphology and Performance of IrO2-RuO2-SnO2/Ti Anode. Materials Reports, 2024, 38(24): 23080117-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080117  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23080117
1 Wu W, Huang Z H, Lim T T. Applied Catalysis A: General,2014,480,58.
2 Xu L K, Scantlebury J D. Journal of the Electrochemical Society,2003,150(6),B254.
3 Wang K, Han Y, Wang J T, et al. Electrochemical, 2006, 12(2), 159 (in Chinese).
王科, 韩严, 王均涛, 等. 电化学, 2006, 12(2), 159.
4 Zhang X D, Tian L, Lin L, et al. Modern Chemical Industry, 2023, 43(1), 145 (in Chinese).
庄晓东, 田林, 林琳, 等. 现代化工, 2023, 43(1), 145.
5 Zhang X D, Li W S, Lin Y. Electroplating and Finishing, 2007, 12(4), 51 (in Chinese).
张小弟, 李伟善, 林毅. 电镀与涂饰, 2007, 12(4), 51.
6 Jia L N. Effect of adding Sn element on the electrochemical properties of Ru-Ir-Ti metal oxide anodic coatings. Master’s Thesis, Dalian Maritime University, China, 2011 (in Chinese).
贾理男. 添加Sn元素对Ru-Ir-Ti金属氧化物阳极涂层电化学性能的影响. 硕士学位论文, 大连海事大学, 2011.
7 Wenting Xu, Geir Martin Haarberg, Frode Seland, et al. Corrosion Science, 2019, 202, 31.
8 Zhu C Y, Qu M, Li Y, et al. Silicate Bulletin, 2018, 37(9), 2908 (in Chinese).
朱晁莹, 屈敏, 李银, 等. 硅酸盐通报, 2018, 37(9), 2908.
9 Pathiraja G C, Nanayakkara N, Wijayasinghe A. Bulletin of Materials Science, 2016, 39(3), 803.
10 Lee Y M, Suntivich J, May K J, et al. The Journal of Physical Chemistry Letters, 2012, 3, 399.
11 Cherevko S, Geiger S, Kasian O, et al. Catalysis Today, 2016, 262, 170.
12 Chen Y Y, Wang X, Shao Y Q, et al. Chinese Journal of Nonferrous Metals, 2009, 19(4), 689 (in Chinese).
陈永毅, 王欣, 邵艳群, 等. 中国有色金属学报, 2009, 19(4), 689.
13 Chen Y, Tang D, Shao Y, et al. Rare Metal Materials & Engineering, 2009, 38(10), 1843.
14 Li G Z, Lu L N. Rare Metals Express, 2006, 25(6), 31 (in Chinese).
李广忠, 芦丽娜. 稀有金属快报, 2006, 25(6), 31.
15 Zhuang X D, Tian L, Lin L, et al. Nonferrous Metal Engineering, 2022, 12(7), 33 (in Chinese).
庄晓东, 田林, 林琳, 等. 有色金属工程, 2022, 12(7), 33.
16 Dai C H, Cheng Z J, Zhou J R. Metallurgical Analysis, 2022, 42(12), 72 (in Chinese).
戴超华, 成震今, 周君儒. 冶金分析, 2022, 42(12), 72.
17 Chen X, Chen G. Electrochimica Acta, 2005, 50(20), 4155.
18 Moradi F, Dehghanian C. Progress in Natural Science: Materials International, 2014, 24(2), 134.
19 Alibek R, Atapour M, Aghajani A, et al. Electrochimica Acta, 2023, 12, 4.
20 Wang T Y, Xu L K, Chen G Z. Electrochemistry, 2000, 6(1), 6 (in Chinese).
王廷勇, 许立坤, 陈光章. 电化学, 2000, 6(1), 6.
21 Yan Z, Zhao Y, Zhang Z, et al. Electrochimica Acta, 2015, 157, 345.
22 Sun M M. Preparation of titanium-based IrxSi(1-x)O2 coated anode and its application in electrosynthesis of N2O5. Master’s Thesis, Tianjin University, China, 2015 (in Chinese).
孙猛猛. 钛基IrxSi(1-x)O2涂层阳极的制备及在电合成N2O5中的应用. 硕士学位论文, 天津大学, 2015.
[1] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[2] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[3] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[4] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[5] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[6] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[7] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[8] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[9] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[10] 邓安强, 罗永春, 袁远, 康晓燕, 周健飞, 谢云丁, 沈秉金, 王悦. 超点阵结构储氢合金研究进展[J]. 材料导报, 2023, 37(17): 22040141-9.
[11] 刘宏亮, 王月莹, 沙剑春, 杨炳林, 贾志明, 王鑫, 高思睿, 何立子. 固溶温度对Al-Mg-Sn-Ga-Bi合金显微组织及电化学性能的影响[J]. 材料导报, 2023, 37(14): 21120010-6.
[12] 秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
[13] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[14] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[15] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed