Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22030288-8    https://doi.org/10.11896/cldb.22030288
  无机非金属及其复合材料 |
直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能
杨文飞1,*, 张勇1, 樊伟杰1, 王安东1, 董星龙2
1 海军航空大学青岛校区,山东 青岛 266041
2 大连理工大学材料科学与工程学院,三束材料改性教育部重点实验室,辽宁 大连 116024
Co-evaporation Synthesis in Arc Plasma of Amorphous TiO2-based Nanocomposites with Stable Lithium Storage
YANG Wenfei1,*, ZHANG Yong1, FAN Wenjie1, WANG Andong1, DONG Xinglong2
1 Naval Aviation University Qingdao Campus, Qingdao 266041, Shandong, China
2 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 13367KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 零应变TiO2由于结构稳定、安全无污染,以及循环过程中低的体积膨胀(≤4%),是一类极具潜力的锂电负极材料。但较低的理论比容量(335 mAh·g-1)和较小的锂离子扩散系数无法满足市场对高能量密度和快速充放电电池的需求,限制了其进一步的应用。本工作利用共蒸发混合原料(CuO+TiO2粗粉)法,原位合成了核/壳型无定型二氧化钛(a.-TiO2)包覆的铜纳米粒子(Cu@a.-TiO2 NPs),通过后续热氧化处理将Cu核部分氧化为电化学活性的CuO中间包覆层,最终获得了Cu@CuO@a.-TiO2纳米复合粒子(Cu@CuO@a.-TiO2NCs)。结果表明,Cu@CuO@a.-TiO2 NCs电极的首周放电比容量为1 936.1 mAh·g-1,200次循环后放电比容量保持在882.3 mAh·g-1,库伦效率为98.8%。无定型TiO2壳层提供了快速的离子/电子渗透通道,促进锂离子扩散迁移,提高了电荷的传输效率;金属Cu核组元有利于提高电极整体电导率,氧化过程产生的空隙缓解了电化学活性CuO相的体积膨胀效应,从而提高了Cu@CuO@a.-TiO2 NCs电极整体的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文飞
张勇
樊伟杰
王安东
董星龙
关键词:  直流电弧等离子体  无定型二氧化钛  锂离子电池  负极材料  电化学性能    
Abstract: TiO2 as an anode material for lithium ion batteries(LIBs) has received much attention due to its stable structure, safety and environmental benignity, as well as small volume expansion rate (≤4%) during cycling. However, the low theoretical specific capacity (335 mAh·g-1) and diffusion coefficient of lithium ions, which hinders its practical applications. According, the core-shell Cu@a.-TiO2 NPs are in situ synthesized by co-evaporation of the micron powder mixture of CuO and TiO2. The Cu core is oxidized into electrochemically active CuO phase that is used as the intermediate coating to obtain Cu@CuO@a.-TiO2 NCs. Testing results indicate that the Cu@CuO@a.-TiO2NCs electrode delivers an initial discharge specific capacity of 1 936.1 mAh·g-1. After 200 cycles, the discharge specific capacity can still maintain 882.3 mAh·g-1with a coulombic efficiency of 98.8%. The amorphous TiO2 shell provides abundant active sites to promote the diffusion and migration of lithium ions, and thus improve the transfer efficiency of charge; metallic Cu can enhance conductivity of electrode, and the interspace generated by its oxidation can accommodate volume variation, which improves the electrochemical performances of Cu@CuO@a.-TiO2 NCs electrode.
Key words:  arc plasma    amorphous TiO2    lithium ion battery    anode materials    electrochemical properties
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TQ152  
基金资助: 国家自然科学基金(52101392);山东省自然科学基金(ZR2020QD081);山东省高等学校青创科技支持计划(2020KJA014)
通讯作者:  *杨文飞,2016年获得贵州师范大学学士学位,2016—2021年于大连理工大学硕博连读,2021年获得大连理工大学博士学位。现任海军航空大学青岛校区讲师。在国内外发表论文8篇,目前主要研究方向包括纳米材料制备技术与工程化应用、储能材料、电磁屏蔽功能材料等。yangwf_dlut@163.com   
引用本文:    
杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
YANG Wenfei, ZHANG Yong, FAN Wenjie, WANG Andong, DONG Xinglong. Co-evaporation Synthesis in Arc Plasma of Amorphous TiO2-based Nanocomposites with Stable Lithium Storage. Materials Reports, 2023, 37(19): 22030288-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030288  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22030288
1 Yoshio M, Wang H, Fukuda K, et al. Journal of Materials Chemistry, 2004, 14(11), 1754.
2 Wang H Y, Yoshio M, Abe T, et al. Journal of the Electrochemical Society, 2002, 149(4), A499.
3 An S J, Li J, Daniel C, et al. Carbon, 2016, 105(28), 52.
4 Tack L W, Azam M A, Seman R N. The Journal of Physical Chemistry A, 2017, 121(13), 2636.
5 Reddy M V, Rao G S, Chowdari B. Chemical Reviews, 2013, 113(7), 5364.
6 Wang Y, Li Y, Zhu J, et al. Materials Reports, 2018, 32(21), 8(in Chinese).
王莹, 李勇, 朱靖, 等. 材料导报, 2018, 32(21), 8.
7 Yan S H, Abhilash K P, Tang L. Y, et al. Small, 2019, 15(4), 1804371.
8 Han J H, Hirata A, Du J, et al. Nano Energy, 2018, 49, 354.
9 Yuwono J A, Burr P, Galvin C, et al. ACS Applied Materials & Interfaces, 2021, 13(1), 1791.
10 Huang H, Wang X, Tervoort E, et al. ACS Nano, 2018, 12(3), 2753.
11 Lian S T, Lv J S, Mai L Q, et al. Journal of Electrochemistry, 2019, 25(1), 31(in Chinese).
廉思甜, 吕建帅, 麦立强, 等. 电化学. 2019, 25(1), 31.
12 Xiong H, Michael D, Balasubramanian B, et al. The Journal of Physical Chemistry Letters, 2011, 2, 2560.
13 Su D W, Dou S X, Wang G X, et al. Chemistry of Materials, 2015, 27(17), 6022.
14 Borghols W, Lützenkirchen-Hecht D, Haake U A. Journal of the Electrochemical Society, 2010, 157(5), A582.
15 Lin Y M, Abel P R, Flaherty D W, et al. Journal of Physical Chemistry C, 2011, 115(5), 2585.
16 Liu Y, Ding C F, Yan X D, et al. Chemical Engineering Journal, 1996, 2021, 420, 129894.
17 Zhou Y L, Wang N, Muhammad J, et al. Carbon, 2019, 148, 204.
18 Khan R, Xing Y, Wang J, et al. Journal of Alloys and Compounds, 2021, 880, 160469.
19 Zhang D, Tang Y Z, He Y, Zhang C Q, et al. Nanomaterials, 2021, 11(11), 3138.
20 Polat D B, Keles O, Amine K. Journal of Power Sources, 2016, 304, 273.
21 Huang J M, Zhao G D, Cai X P, et al. Acta Scientiae Circumstantiae, 2006(4), 620(in Chinese).
黄佳木, 赵国栋, 蔡小平, 等. 环境科学学报, 2006(4), 620.
22 Zhang Z K, Guo D Z, Zhang G M. Journal of Colloid and Interface Science, 2011, 357(1), 95.
23 Gao L, Wang Z J, Hu H, et al. Journal of Electroanalytical Chemistry, 2020, 876, 11448.
24 Dahlang T, Sven T, et al. Journal of Physics:Condensed Matter, 2012, 24(17), 175002.
25 Poulston S, Parlett P M, Stone P, et al. Surface and Interface Analysis, 1996, 24(12), 811.
26 Espinós J P, Morales J, Barranco A, et al. The Journal of Physical Chemistry B, 2002, 106(27), 6921.
27 Liu Y, Ding C, Yan X, et al. Chemical Engineering Journal, 2021, 420, 129894.
28 Diebold U, Madey T E. Surface Science Spectra, 1996, 4(3), 227.
29 Rehman N U, Khan F U, Khattak N, et al. Physics Letters A, 2008, 372(9), 1462.
30 Yang W F, Zhang X, Huang F R, et al. Applied Surface Science, 2021, 557, 149848.
31 Rehman N U, Khan F U, Khattak N, et al. Physics Letters A, 2008, 372(9), 1462.
32 Xin R X. Plasma emission spectrometry, Chemical Industry Press, China, 2005(in Chinese).
辛仁轩. 等离子体发射光谱分析, 化学工业出版社, 2005.
33 Griem H R. Plasma spectroscopy, McGraw-Hill, USA, 1964.
34 Zhang Z Q, Zhang G G, Qie S, et al. Low Voltage Apparatus, 2016(22), 57(in Chinese).
张志强, 张国钢, 郄爽, 等. 电器与能效管理技术, 2016(22), 57.
35 Menneveux, Jérme, Veilleux J. Plasma Chemistry and Plasma Processing, 2022, 42(3), 483.
36 Bi Z H, Paranthaman M P, Menchhofer P A, et al. Journal of Power Sources, 2013, 222(1), 461.
37 Guo B, Shu J, Wang Z, et al. Electrochemistry Communications, 2008, 10(12), 1876.
[1] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[2] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[3] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[4] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[5] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[6] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[7] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[8] 邓安强, 罗永春, 袁远, 康晓燕, 周健飞, 谢云丁, 沈秉金, 王悦. 超点阵结构储氢合金研究进展[J]. 材料导报, 2023, 37(17): 22040141-9.
[9] 刘宏亮, 王月莹, 沙剑春, 杨炳林, 贾志明, 王鑫, 高思睿, 何立子. 固溶温度对Al-Mg-Sn-Ga-Bi合金显微组织及电化学性能的影响[J]. 材料导报, 2023, 37(14): 21120010-6.
[10] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[11] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[12] 秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
[13] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[14] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[15] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed