Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23040181-12    https://doi.org/10.11896/cldb.23040181
  无机非金属及其复合材料 |
高镍三元正极材料容量衰退机理及改性研究进展
付举, 谢雯娜, 智茂永*
中国民用航空飞行学院民航安全工程学院,民机火灾科学与安全工程四川省重点实验室,四川 广汉 618307
Research Progress on Capacity Decay Mechanism and Modification of High-nickel Ternary Cathode Materials
FU Ju, XIE Wenna, ZHI Maoyong*
Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China
下载:  全 文 ( PDF ) ( 57552KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高镍三元正极材料凭借比容量高和成本较低等优点,逐渐成为锂离子电池中正极材料的主要选择之一。但其在使用中存在容量衰减过快、循环稳定性不佳和热稳定性差等问题,影响着它在锂离子电池中的广泛应用。本文简要分析了几种主要造成高镍三元正极材料容量衰退情况涉及的内在机理;重点介绍了近几年主流的改性研究手段,如表面包覆、元素掺杂、结构设计和优化电解质等;最后对高镍三元正极材料未来的发展趋势做出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付举
谢雯娜
智茂永
关键词:  高镍三元正极材料  锂离子电池  容量衰退机理  改性方法    
Abstract: With the advantages of high specific capacity and low cost, high nickel ternary cathode materials have gradually become one of the main choices for cathode materials in lithium-ion batteries. However, there are problems such as rapid capacity decay, poor cycling stability and thermal stability, which affect its wide application in lithium-ion batteries. In this paper, the mechanism involved in the capacity degradation of high-nickel ternary cathode materials is briefly analyzed. This review focuses on the mainstream modification strategies including surface coating, elemental doping, structural design and optimized electrolyte in recent years. Finally, the future development trend of high nickel cathode mate-rials is prospected.
Key words:  high-nickel ternary cathode materials    lithium-ion batteries    capacity fading mechanism    modification method
发布日期:  2023-09-06
ZTFLH:  TQ152  
基金资助: 四川省科技计划(2021SZY007;2021YFSY0001;2022YFG0236);中央高校基本科研业务费基金项目(J2021-097; J2022-092);民机火灾科学与安全工程四川省重点实验室(MZ2022JB02;MZ2022KF04)
通讯作者:  *智茂永,中国民用航空飞行学院民航安全工程学院副教授、硕士研究生导师。2016年四川大学材料学专业博士毕业。目前主要从事航空安全、动力电池热管理研究工作。发表论文20余篇,包括Journal of Energy StorageJournal of Power Sources等。zhimaoyong@cafuc.edu.cn   
作者简介:  付举,中国民用航空飞行学院民航安全工程学院讲师、硕士研究生导师。2019年四川大学材料学专业博士毕业。目前主要从事动力锂电池关键材料、锂电池热安全与监测预警研究工作。发表论文10余篇,包括Journal of Energy ChemistryElectrochimica Acta等。
引用本文:    
付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
FU Ju, XIE Wenna, ZHI Maoyong. Research Progress on Capacity Decay Mechanism and Modification of High-nickel Ternary Cathode Materials. Materials Reports, 2023, 37(S1): 23040181-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040181  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23040181
1 Zhao Y, Liu L, Cheng J, et al. Ceramics International, 2023, 49(3), 4184.
2 Chen G, Li Y, Zhang H, et al. Applied Physics Express, 2019, 12(11), 111003.
3 Wang X, Bai Y, Wang X, et al. Chinese Journal of Chemistry, 2020, 38(12), 1847.
4 Xie H, Du K, Hu G, et al. The Journal of Physical Chemistry C, 2016, 120(6), 3235.
5 Liu W, Oh P, Liu X, et al. Angewandte Chemie International Edition, 2015, 54(15), 4440.
6 Qiu R, Wu Z. Electrochemistry, 2021, 89(3), 296.
7 Wu F, Tian J, Su Y, et al. ACS Applied Materials & Interfaces, 2015, 7(14), 7702.
8 Verbrugge M W, Baker D R, Chen S, et al. Frontiers in Energy Research, 2022, 10, 889176.
9 Flores E, Novák P, Aschauer U, et al. Chemistry of Materials, 2020, 32(1), 186.
10 Ramakrishnan S, Park B, Wu J, et al. Journal of the American Chemical Society, 2020, 142(18), 8522.
11 Yin S, Deng W, Chen J, et al. Nano Energy, 2021, 83, 105854.
12 Zhou T, Yu X, Li F, et al. Energy Storage Materials, 2023, 55, 691.
13 Noh H J, Youn S, Yoon C S, et al. Journal of Power Sources, 2013, 233, 121.
14 Ryu H H, Park K J, Yoon C S, et al. Chemistry of Materials, 2018, 30(3), 1155.
15 Nam G W, Park N Y, Park K J, et al. ACS Energy Letters, 2019, 4(12), 2995.
16 Bi Y, Tao J, Wu Y, et al. Science, 2020, 370(6522), 1313.
17 Sun Y K. ACS Energy Letters, 2019, 4(5), 1042.
18 Park K J, Hwang J Y, Ryu H H, et al. ACS Energy Letters, 2019, 4(6), 1394.
19 Abebe E B, Yang C C, Wu S H, et al. ACS Applied Energy Materials, 2021, 4(12), 14295.
20 Cho D H, Jo C H, Cho W, et al. Journal of the Electrochemical Society, 2014, 161(6), A920.
21 Radloff S, Carbonari G, Scurtu R G, et al. Journal of Power Sources, 2023, 553, 232253.
22 Chen A, Wang K, Li J, et al. Frontiers in Energy Research, 2020, 8, 593009.
23 Li Y, Shi H, He J, et al. Applied Surface Science, 2022, 593, 153409.
24 Liu W, Oh P, Liu X, et al. Angewandte Chemie International Edition, 2015, 54(15), 4440.
25 Kong D, Hu J, Chen Z, et al. Advanced Energy Materials, 2019, 9(41), 1901756.
26 Ju X, Hou X, Liu Z, et al. Small, 2023, 19(20), 2207328.
27 Namkoong B, Park N, Park G, et al. Advanced Energy Materials, 2022, 12(21), 2200615.
28 Hu D, Su Y, Chen L, et al. Journal of Energy Chemistry, 2021, 58, 1.
29 Chang S, Li Y, Zheng J, et al. Ionics, 2020, 26(11), 5417.
30 Wang L, Su Q, Shi W, et al. Electrochimica Acta, 2022, 435, 141411.
31 Ma F, Wu Y, Wei G, et al. Journal of Solid State Electrochemistry, 2019, 23(7), 2213.
32 Xiong X, Wang Z, Yin X, et al. Materials Letters, 2013, 110, 4.
33 Jo C, Voronina N, Kim H J, et al. Small, 2021, 17(47), 2104532.
34 Kim J H, Park M S, Song J H, et al. Journal of Alloys and Compounds, 2012, 517, 20.
35 Ding G, Yan F, Zhu Z, et al. Ceramics International, 2022, 48(4), 5714.
36 Yao C, Mo Y, Jia X, et al. Solid State Ionics, 2018, 317, 156.
37 Chen Z, Kim G T, Guang Y, et al. Journal of Power Sources, 2018, 402, 263.
38 Liu H, Zhao X, Xie Y, et al. ACS Applied Materials & Interfaces, 2022, 14(50), 55491.
39 Fan X, Ou X, Zhao W, et al. Nature Communications, 2021, 12(1), 5320.
40 Shan W, Zhang H, Hu C, et al. Electrochimica Acta, 2021, 367, 137216.
41 Ma Y, Xu M, Zhang J, et al. Journal of Alloys and Compounds, 2020, 848, 156387.
42 Li Y, Zhang D, Yan Y, et al. Journal of Alloys and Compounds, 2022, 923, 166317.
43 Yuan K, Tu T, Shen C, et al. Journal of Advanced Ceramics, 2022, 11(6), 882.
44 Li Y, Zhu J, Deng S, et al. Journal of Alloys and Compounds, 2019, 798, 93.
45 Do S J, Santhoshkumar P, Kang S H, et al. Ceramics International, 2019, 45(6), 6972.
46 Mao G, Yang Y, Jiao W, et al. Journal of Materials Science, 2022, 57(42), 19892.
47 Wang N, Zhu Y, Yao J, et al. Functional Materials Letters, 2021, 14(1), 2150002.
48 Kim U H, Park G T, Son B K, et al. Nature Energy, 2020, 5(11), 860.
49 He T, Chen L, Su Y, et al. Journal of Power Sources, 2019, 441, 227195.
50 Sun Y, Huang W, Zhao G, et al. ACS Energy Letters, 2023, 8(3), 1629.
51 Zhang P, Liu Z, Ma B, et al. Ceramics International, 2021, 47(23), 33843.
52 Yao C, Zhou C, Cheng B, et al. Crystals, 2022, 12(9), 1297.
53 Binder J O, Culver S P, Pinedo R, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44452.
54 Yang B, Zhou L, Hu X, et al. Ionics, 2021, 27(4), 1491.
55 Li Z, Huang X, Liang J, et al. Journal of Energy Chemistry, 2023, 77, 461.
56 Lim J M, Hwang T, Kim D, et al. Scientific Reports, 2017, 7(1), 39669.
57 Fan X, Hu G, Zhang B, et al. Nano Energy, 2020, 70, 104450.
58 Huang B, Wang M, Zhang X, et al. Journal of Alloys and Compounds, 2020, 830, 154619.
59 Lv F, Zhang Y, Wu M, et al. Small, 2022, 18(28), 2201946.
60 Sun Y K, Myung S T, Park B C, et al. Chemistry of Materials, 2006, 18(22), 5159.
61 Lu W, Guo X, Luo Y, et al. Chemical Engineering Journal, 2019, 355, 208.
62 Li X, Liu K, Dong N, et al. ChemElectroChem, 2022, 9(11), e202200266.
63 Zhang Y, Shi H, Song D, et al. Journal of Power Sources, 2016, 327, 38.
64 Maeng S, Chung Y, Min S, et al. Journal of Power Sources, 2020, 448, 227395.
65 Makhonina E V, Maslennikova L S, Volkov V V, et al. Applied Surface Science, 2019, 474, 25.
66 Park K J, Choi M J, Maglia F, et al. Advanced Energy Materials, 2018, 8(19), 1703612.
67 Walton I M, Cox J M, Benson C A, et al. New Journal of Chemistry, 2016, 40(1), 101.
68 Lim B B, Yoon S J, Park K J, et al. Advanced Functional Materials, 2015, 25(29), 4673.
69 Wu K, Qian L, Sun X, et al. Journal of Solid State Electrochemistry, 2018, 22(2), 479.
70 Jiao T, Liu G, Zou Y, et al. Journal of Power Sources, 2021, 515, 230618.
71 Du F, Sun P, Zhou Q, et al. ACS Applied Materials & Interfaces, 2020, 12(51), 56963.
72 Chen Y, Cui Y, Wang S, et al. Advanced Materials, 2023, 35(18), 2300982.
[1] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[2] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[3] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[4] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[5] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[6] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[7] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[8] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[9] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[10] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[11] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[12] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[13] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[14] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[15] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed