Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21070223-14    https://doi.org/10.11896/cldb.21070223
  无机非金属及其复合材料 |
高电压钴酸锂正极材料研究进展
陈喜, 杨春利*, 黄江龙, 张浩, 王靖
西安建筑科技大学材料科学与工程学院功能材料研究所,西安 710055
Research Progress of High Voltage Lithium Cobalt Oxide Cathode Materials
CHEN Xi, YANG Chunli*, HUANG Jianglong, ZHANG Hao, WANG Jing
Functional Materials Laboratory, College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 16857KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钴酸锂(LiCoO2)因具有较高比容量、高放电平台及压实密度等优点,是目前用于3C等消费类电池的主要正极活性材料。随着电子产品的轻量化、微型化发展,人们对钴酸锂体系锂离子电池能量密度和循环性能的要求逐渐提高,如何有效提升能量密度是当前亟需解决的问题。
提升能量密度的方法主要有开发高比容量活性材料、提升材料的压实密度和提高工作电压。其中,提高工作电压是现阶段最有效的方式。在高充电截止电压(>4.4 V)下,钴酸锂脱锂量增加,更多活性Li+参与脱嵌过程,使得材料的实际克容量得到显著提升。同时,高工作电压会造成材料的结构发生不可逆相转变、界面副反应增多等问题,导致材料性能降低,电池容量衰减。针对这些问题,近些年研究者对高电压钴酸锂做了大量改性研究,解决方法主要集中在体相掺杂和表面包覆。体相掺杂能提高材料的结构稳定性,延缓层状结构坍塌。表面包覆对缓解界面副反应有显著的作用。通过改性来实现相转变及界面副反应的有效控制对推动高电压钴酸锂的商业化发展具有重要意义。
本文主要以高电压钴酸锂材料作为切入点,总结了钴酸锂的结构组成、制备方法以及高工作电压下性能衰减原因,重点讨论了高电压钴酸锂的体相掺杂和包覆改性的研究进展,深入分析了改性对材料结构及电化学性能的影响,最后对高电压钴酸锂正极材料的发展趋势进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈喜
杨春利
黄江龙
张浩
王靖
关键词:  锂离子电池  钴酸锂  掺杂  包覆    
Abstract: Because of its high specific capacity, discharge platform, and compaction density, lithium cobalt oxide (LiCoO2) is still the dominant cathode material for lithium-ion batteries in portable electronics such as 3C. With the development of lightweight and miniaturization of portable electronics, the requirements for high energy density and long-cycle performance of lithium-ion batteries with lithium cobalt oxide system have increased. Effective enhancement of energy density is an urgent problem requiring a solution.
The methods to improve energy density include developing new active materials with high specific capacity, increasing the compaction density, and increasing the working voltage of materials. Amongst these methods, the most effective approach is to increase the working voltage. At the upper charge cut-off voltage (>4.4 V), the amount of lithium removed fromlithium cobalt oxide increases and more active Li+ participates in the de-intercalation process, which significantly improves the actual gram capacity. However, several detrimental issues including irreversible phase transitions and interfacial side reactions emerge, which result in the degradation of material performance and the rapid loss of capacity. To solve these problems, researchers have modified high-voltage lithium cobalt oxide in recent years. These modifications primarily focus on bulk doping and surface coating. Bulk doping improves the structural stability of the material and delays the collapse of layered structures. Surface coating plays a significant role in alleviating the interfacial side reactions. The effective control of phase transitions and interfacial side reactions by modification is of great significance to promote the commercial development of high-voltage lithium cobalt oxide.
This review focuses on the high-voltage lithium cobalt oxide material. Its structure, preparation method, and performance degradation at high working voltage are summarized. Additionally, recent developments in bulk doping and coating modification of high-voltage lithium cobalt oxide are introduced in detail and the effects of modification on the structure and electrochemical performance of the material are deeply analyzed. Finally, the development of high-voltage lithium cobalt oxide cathode materials is also discussed.
Key words:  lithium-ion battery    lithium cobalt oxide    doping    coating
发布日期:  2023-07-10
ZTFLH:  TM912  
基金资助: 西部绿色建筑国家重点实验室自主研究课题(LSZZ202020);陕西省自然科学基础研究计划项目(2021JQ-497);陕西省教育厅服务地方专项计划项目(20JC022);西安建筑科技大学自然科学专项项目(ZR20026)
通讯作者:  *杨春利,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。2005年郑州大学材料科学与工程专业本科毕业,2012年7月取得中国科学技术大学材料学博士学位(硕/博连读),同年加入西安建筑科技大学材料科学与工程学院工作至今,主要从事的研究工作涉及中空纤维管、混合导电气体分离膜、固体氧化物燃料电池的制备与表征等方面。在国内外期刊发表文章30余篇,包括Journal of Power Sources、Materials Letters、Materials Science and Engineering B、Chinese Journal of Chemical Physics、Journal of Alloys and Compounds、《材料导报》《无机材料学报》等。yangchunli@xauat.edu.cn   
作者简介:  陈喜,2018年6月于西安建筑科技大学获得工学学士学位。现为西安建筑科技大学材料科学与工程学院硕士研究生,在杨春利副教授的指导下进行研究。目前主要研究领域为锂硫电池正极材料的制备及应用。
引用本文:    
陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
CHEN Xi, YANG Chunli, HUANG Jianglong, ZHANG Hao, WANG Jing. Research Progress of High Voltage Lithium Cobalt Oxide Cathode Materials. Materials Reports, 2023, 37(13): 21070223-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070223  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21070223
1 Goodenough J B, Park K S. Journal of the American Chemical Society, 2013, 135(4), 1167.
2 Wang K, Wan J J, Xiang Y X, et al. Journal of Power Sources, 2020, 460(1), 228062.
3 Gu R, Ma Z T, Cheng T, et al. ACS Applied Materials Interfaces, 2018, 10(37), 31271.
4 Lyu Y C, Wu X, Wang K, et al. Advanced Energy Materials, 2020, 11(2), 2000982.
5 Kim C, Yang Y, Ha D, et al. RSC Advances, 2019, 9(55), 31936.
6 Xu T T, Su J Y, Ha E, et al. Materials Letters, 2020, 274, 128006.
7 Bakierska M, Świętosławski M, Chudzik K, et al. Solid State Ionics, 2018, 317, 190.
8 Palaniyandy N, Rambau K, Musyoka N, et al. Journal of the Electrochemical Society, 2020, 167(9), 090510.
9 Zhu J, Cao G L, Li Y J, et al. Scripta Materialia, 2020, 178, 51.
10 Välikangas J, Laine P, Hietaniemi M, et al. Applied Sciences, 2020, 10(24), 8988.
11 Kim H, Kim S B, Park D H, et al. Energies, 2020, 13(18), 4808.
12 Jung C H, Shim H, Eum D, et al. Journal of the Korean Ceramic Society, 2020, 58(1), 1.
13 Zhao X X, An L W, Sun J C, et al. Journal of Electroanalytical Chemistry, 2018, 810, 1.
14 Julien C M, Mauger A. Energies, 2020, 13(23), 6363.
15 Zhai X H, Zhang P P, Zhou J F, et al. Materials Reports, 2021, 35(7), 07056 (in Chinese).
翟鑫华, 张盼盼, 周建峰, 等. 材料导报, 2021, 35(7), 07056.
16 Dou S. Journal of Solid State Electrochemistry, 2013, 17(4), 911.
17 Barbosa J C, Goncalves R, Costa C M, et al. Energies, 2021, 14(11), 3145.
18 Na Y, Sun X H, Fan A R, et al. Chinese Chemical Letters, 2021, 32(3), 973.
19 Li W J, Xu H Y, Yang Q, et al. Energy Storage Science and Technology, 2020, 9(2), 448 (in Chinese).
李文俊, 徐航宇, 杨琪, 等. 储能科学与技术. 2020, 9(2), 448.
20 Kalluri S, Yoon M, Jo M, et al. Advanced Energy Materials, 2017, 7(1), 1601507.
21 Freitas B, Siqueira Jr J, Da Costa L, et al. Journal of the Brazilian Chemical Society, 2017, 28(11), 2254.
22 Kumar B K, Pollet M, Artemenko A, et al. Journal of Solid State Che-mistry, 2013, 198, 45.
23 Ekwongsa C, Rujirawat S, Butnoi P, et al. Radiation Physics and Che-mistry, 2020, 175, 108545.
24 Yan S J, Zhang M G, Tian H W, et al. Rare Metal Materials and Engineering, 2007, 36(3), 440 (in Chinese).
闫时建, 张敏刚, 田文怀, 等. 稀有金属材料与工程, 2007, 36(3), 440.
25 Lin M, Hu J Q, Zhu Z Z. Journal of Xiamen University, 2016, 55(3), 371 (in Chinese).
林妹, 胡家琦, 朱梓忠. 厦门大学学报, 2016, 55(3), 371.
26 Lu X, Sun Y, Jian Z L, et al. Nano Letters, 2012, 12(12), 6192.
27 Chen Z H, Dahn J R. Electrochimica Acta, 2004, 49(7), 1079.
28 Amatucci G G, Tarascon J M, Klein L C. Journal of the Electrochemical Society, 1996, 143(3), 1114.
29 Wang L, Maxisch T, Ceder G. Chemistry of Materials, 2007, 19, 543.
30 Mukai K, Uyama T, Nonaka T. ACS Inorganic Chemistry, 2020, 59(15), 11113.
31 Yang Z X, Li R G, Deng Z H. Scientific Reports, 2018, 8(1), 863.
32 Cai Y. Research on 4.5 V high voltage LiCoO2 cathode material for high power density lithium ion battery. Master's Thesis, University of Electronic Science and Technology of China, China, 2017 (in Chinese).
蔡宇. 高能量密度锂离子电池4.5 V高电位钴酸锂正极材料研究. 硕士学位论文, 电子科技大学, 2017.
33 Ven A V D, Aydinol M K, Cede G. Journal of the Electrochemical Society, 1998, 145(6), 2149.
34 Vetter J, Novák P, Wagner M R, et al. Journal of Power Sources, 2005, 147, 269.
35 Choi J, Alvarez E, Arunkumar T A, et al. Electrochemical and Solid-State Letters, 2006, 9(5), A241.
36 Venkatraman S, Manthiram A. Journal of Solid State Chemistry, 2004, 177(11), 4244.
37 Zhang J N. Failure analysis and modification research on high voltage LiCoO2. Ph. D. Thesis, Chinese Academy of Sciences, China, 2018 (in Chinese).
张杰男. 高电压钴酸锂的失效分析与改性研究. 博士学位论文, 中国科学院大学, 2018.
38 Smith A J, Dahn H M, Burns J C, et al. Journal of the Electrochemical Society, 2012, 159(6), A705.
39 Lu Z Y, Wang H T, Kong D S, et al. Nature Communications, 2014, 5(1), 4345.
40 Shen B. Research on capacity loss mechanisms and modifications of lithium cobalt oxides cathodes. Ph. D. Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
申斌. 正极钴酸锂材料的容量衰减机制及改性研究. 博士学位论文, 哈尔滨工业大学, 2017.
41 Sun C L, Liao X B, Xia F J, et al. ACS Nano, 2020, 14(5), 6181.
42 Chebiam R V, Kannan A M, Prado F, et al. Electrochemistry Communications, 2001, 3(11), 624.
43 Ruan D S, Li B, Mao L L, et al. Chinese Journal of Power Sources, 2020, 44(9), 1387 (in Chinese).
阮丁山, 李斌, 毛林林, 等. 电源技术, 2020, 44(9), 1387.
44 Kazda T, Vondrak J, Sedlarikova M, et al. Portugaliae Electrochimica Acta, 2013, 31(6), 331.
45 Kim S, Choi S, Lee K, et al. Physical Chemistry Chemical Physics, 2017, 19(5), 4104.
46 Zhu Z, Wang H, Li Y, et al. Advanced Materials, 2020, 32(50), 2005182.
47 Koyama Y, Arai H, Tanaka I, et al. Journal of Materials Chemistry A, 2014, 2(29), 11235.
48 Sathiyamoorthi R, Chandrasekaran R, Gopalan A, et al. Materials Research Bulletin, 2008, 43(6), 1401.
49 Xu L M, Wang K, Gu F, et al. Materials Letters, 2020, 277, 128407.
50 Nithya C, Thirunakaran R, Sivashanmugam A, et al. ACS Applied Materials Interfaces, 2012, 4(8), 4040.
51 Wan J J, Zhu J P, Xiang Y X, et al. Journal of Energy Chemistry, 2021, 54(3), 786.
52 Xu H Y, Xie S, Zhang C P, et al. Journal of Power Sources, 2005, 148, 90.
53 Kazda T, Vondrak J, Sedlaikova M, et al. ECS Transactions, 2014, 63(1), 65.
54 Hirooka M, Sekiya T, Omomo Y, et al. Journal of Power Sources, 2020, 463, 228127.
55 Jiang Y X, Zhou F, Wang C L, et al. Ionics, 2016, 23(3), 585.
56 Huang Y Y, Zhu Y C, Hao Y F, et al. Angewandte Chemie International Edition in English, 2021, 60(9), 4682.
57 Zhu X M, Shang K H, Jiang X Y, et al. Ceramics International, 2014, 40(7), 11245.
58 Needham S A, Wang G X, Liu H K, et al. Journal of Power Sources, 2007, 174(2), 828.
59 Liu A, Li J, Shunmugasundaram R, et al. Journal of the Electrochemical Society, 2017, 164(7), A1655.
60 Zhang J N, Li Q H, Ouyang C Y, et al. Nature Energy, 2019, 4(7), 594.
61 Zhang J N, Li Q H, Li Q, et al. Chinese Physics B, 2018, 27(8), 088202.
62 Chen M F, Chen P, Yang F, et al. Electrochimica Acta, 2016, 206, 356.
63 Valanarasu S, Chandramohan R. Journal of Materials Science, 2010, 45(9), 2317.
64 Xu X G, Wei Y J, Meng X, et al. Acta Physica Sincia, 2004, 53(1), 210 (in Chinese).
徐晓光, 魏英进, 孟醒, 等. 物理学报, 2004, 53(1), 210.
65 Gu R, Qian R C, Lyu Y C, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(25), 9346.
66 Wang Y T, Cheng T, Yu Z E, et al. Journal of Alloys and Compounds, 2020, 842, 155827.
67 Valanarasu S, Chandramohan R, Thirumalai J, et al. Ionics, 2011, 18, 39.
68 Hasan F, Kim J, Song H, et al. Journal of Electrochemical Science and Technology, 2020, 11(4), 352.
69 Zou M J, Yoshio M, Gopukumar S, et al. Chemistry of Materials, 2003, 15(25), 4699.
70 Valanarasu S, Chandramohan R. Journal of Alloys and Compounds, 2010, 494, 434.
71 Yu J P, Han Z H, Hu X H, et al. Electrochimica Acta, 2014, 121, 301.
72 Sun L W, Zhang Z S, Hu X F, et al. Journal of the Electrochemical Society, 2019, 166(10), A1793.
73 Valanarasu S, Chandramohan R. Crystal Research and Technology, 2010, 45(8), 835.
74 Zhang M L, Tan M, Zhao H Y, et al. Applied Surface Science, 2018, 458, 111.
75 Liu Q, Su X, Lei D, et al. Nature Energy, 2018, 3(11), 936.
76 Wang L L, Ma J, Wang C, et al. Advanced Science, 2019, 6(12), 1900355.
77 Yu Y, Kong W, Yang W, et al. The Journal of Physical Chemistry C, 2021, 125(4), 2364.
78 Jung H G, Gopal N V, Prakash J, et al. Electrochimica Acta, 2012, 68, 153.
79 Cao J C, Xiao K S, Jiang F, et al. Mining Engineering, 2016, 36(4), 109 (in Chinese).
曹景超, 肖可颂, 姜锋, 等. 矿冶工程, 2016, 36(4), 109.
80 Jin Y, Lin P, Chen C H. Solid State Ionics, 2006, 177, 317.
81 Zhou A J, Dai X Y, Lu Y T, et al. ACS Applied Materials Interfaces, 2016, 8(49), 34123.
82 Zhang J C, Gao R, Sun L M, et al. Electrochimica Acta, 2016, 209, 102.
83 Cheng T, Cheng Q, He Y, et al. ACS Applied Materials Interfaces, 2021, 13(36), 42917.
84 Wang Y, Zhang Q H, Xue Z C, et al. Advanced Energy Materials, 2020, 10(28), 2001413.
85 Shim J H, Han J M, Lee J H, et al. ACS Applied Materials Interfaces, 2016, 8(19), 12205.
86 Cheng X, Qiang W J, Huang B X. Ceramics International, 2020, 46(16), 25935.
87 Li Z Y, Li A J, Zhang H R, et al. Energy Storage Materials, 2020, 29, 71.
88 Shim J H, Cho N H, Lee S. Electrochimica Acta, 2017, 243, 162.
89 Hwang B J, Chen C Y, Cheng M Y, et al. Journal of Power Sources, 2010, 195(13), 4255.
90 Xie M, Hu T, Yang L, et al. RSC Advances, 2016, 6(68), 63250.
91 Sheng S J, Chen G M, Hu B, et al. Journal of Electroanalytical Chemistry, 2017, 795, 59.
92 Zhao F, Tang Y F, Wang J S, et al. Electrochimica Acta, 2015, 174, 384.
93 Shao L, Zhou L, Yang L S, et al. Electrochimica Acta, 2019, 297, 742.
94 Iriyama Y, Kurita H, Yamada I, et al. Journal of Power Sources, 2004, 137(1), 111.
95 Dai X Y, Zhou A J, Xu J, et al. Journal of Power Sources, 2015, 298, 114.
96 Dai X, Wang L, Xu J, et al. ACS Applied Materials Interfaces, 2014, 6(18), 15853.
97 Wang F Q, Jiang Y, Lin S L, et al. Electrochimica Acta, 2019, 295, 1017.
98 Jayasree S S, Nair S, Santhanagopalan D. Chemistryselect, 2018, 3(10), 2763.
99 Nie K H, Sun X R, Wang J, et al. Journal of Power Sources, 2020, 470, 228423.
100 Shen B, Zuo P J, Li Q, et al. Electrochimica Acta, 2017, 224, 96.
101 Shim J H, Lee S, Park S S. Chemistry of Materials, 2014, 26(8), 2537.
102 Kim K C, Jegal J P, Bak S M, et al. Electrochemistry Communications, 2014, 43, 113.
103 Morimoto H, Awano H, Terashima J, et al. Journal of Power Sources, 2012, 211, 66.
104 Cho J, Kim T G, Kim C, et al. Journal of Power Sources, 2005, 146(1-2), 58.
105 Sun W, Xie M, Shi X, et al. Materials Research Bulletin, 2015, 61, 287.
106 Zhou A, Xu J, Dai X, et al. Journal of Power Sources, 2016, 322, 10.
107 Cao J, Hu G, Peng Z, et al. Journal of Power Sources, 2015, 281, 49.
108 Park J H, Cho J H, Lee E H, et al. Journal of Power Sources, 2013, 244, 442.
109 Chen H L, Wen Y H, Wang Y, et al. RSC Advances, 2020, 10(41), 24533.
110 Kobayashi H, Yuan G, Gambe Y, et al. ACS Applied Energy Materials, 2021, 4(9), 9866.
111 Hu B, Lou X B, Li C, et al. Journal of Power Sources, 2019, 438, 226954.
112 Wang Z G, Wang Z X, Guo H J, et al. Journal of Alloys and Compounds, 2015, 621, 212.
113 Wang Z G, Wang Z X, Guo H J, et al. Ceramics International, 2015, 41(1), 469.
114 Cheng T, Ma Z T, Qian R C, et al. Advanced Functional Materials, 2020, 31(2), 2001974.
115 Wang C W, Zhou Y, You J H, et al. ACS Applied Energy Materials, 2020, 3(3), 2593.
116 Cui Z Z, Wang Z Y, Zhai Y W, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(4), 2473.
117 徐世国, 靳亚珲, 栗志涛, 等. 中国专利, CN107342414A, 2017.
118 李政杰, 雷丹, 王平华, 等. 中国专利, CN109786738A, 2019.
119 田礼平, 刘人生, 陈强, 等. 中国专利, CN108011101A, 2018.
120 崔光磊, 马君, 王龙龙, 等. 中国专利, CN109659542B, 2019.
121 公伟伟, 周贵海, 李魁, 等. 中国专利, CN106058219A, 2016.
122 李玲, 阮丁山, 毛林林, 等. 中国专利, CN111620384A, 2020.
123 徐世国, 栗志涛, 宋健巍, 等. 中国专利, CN107644986A, 2018.
124 李栋梁, 刘亚飞, 陈彦彬, 等. 中国专利, CN109461891A, 2019.
125 廖达前, 唐朝辉, 朱健, 等. 中国专利, CN113247964B, 2021.
126 雷丹, 李阳兴. 中国专利, CN108123109B, 2018.
127 Liang J N, Chen D C, Adair K, et al. Advanced Energy Materials, 2020, 11(1), 2002455.
128 Lan J L, Zheng Q F, Zhou H B, et al. ACS Applied Materials Interfaces, 2019, 11(32), 28841.
129 Lei W, Deng X, Zuo X, et al. ACS Applied Energy Materials, 2021, 4(6), 5877.
130 Cui Z Y, Shi H B, Ding J Y, et al. Materials Letters, 2018, 228, 466.
131 Liu X, Tan Y, Wang W, et al. Nano Letters, 2020, 20(6), 4558.
[1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[2] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[3] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[4] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[5] 卫琳, 刘贵立, 杨疆飞, 李欣玥, 张国英. 零模超晶格类型对石墨烯纳米带金属性影响的密度泛函理论研究[J]. 材料导报, 2023, 37(13): 22010031-7.
[6] 杜泽, 赵尉伶, 匡代洪, 侯亮, 严超, 杨方源. BiFe1-xMnxO3纳米粉末的制备及光催化性能[J]. 材料导报, 2023, 37(13): 21100037-8.
[7] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[8] 陈园虹, 陈婷, 谢志翔, 徐彦乔, 胡泽浩, 林坚. 掺杂型Ⅰ-Ⅲ-Ⅵ族多元量子点的制备及应用研究进展[J]. 材料导报, 2023, 37(10): 21090296-10.
[9] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[10] 赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
[11] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[12] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[13] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[14] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[15] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed