Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21030255-6    https://doi.org/10.11896/cldb.21030255
  无机非金属及其复合材料 |
有机氟包覆片状FeSiAl吸收剂及其吸波性能
陈亮1, 陈少文1, 袁振亮1, 李启凡1, 马会茹2, 陈志宏3, 李维1,*, 官建国1
1 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
2 武汉理工大学化学化工与生命科学学院,武汉 430070
3 武汉理工大学理学院,武汉 430070
Grafting of Organic Fluorine on the Surface of Flaky FeSiAl Particles and Its Microwave Absorption Property
CHEN Liang1, CHEN Shaowen1, YUAN Zhenliang1, LI Qifan1, MA Huiru2, CHEN Zhihong3, LI Wei1,*, GUAN Jianguo1
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2 School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
3 College of Science, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 5302KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以十三氟辛基三乙氧基硅烷(FAS)为硅源,采用水解缩合法对片状FeSiAl吸收剂粒子进行表面接枝包覆,对片状FeSiAl粒子表面包覆前后的微观结构、包覆层成分、静磁性能和电磁性能进行了表征。结果表明:FAS成功地接枝在片状FeSiAl粒子表面形成薄层致密包覆层,包覆后的粒子仍保持较好的软磁性能。由于包覆层的电绝缘及低极化特性,吸收剂的介电常数可降低40%,而磁导率不受影响,从而使材料的阻抗匹配显著提升。当FAS的质量分数为3%,吸收剂的填充质量分数为76%的复合材料是3 mm厚度时,其反射损耗RL小于-3 dB时的吸收带宽从1.206 GHz (0.147~1.353 GHz)增加到1.922 GHz (0.147~2.069 GHz),最小损耗强度从-14.64 dB提升至-16.90 dB。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亮
陈少文
袁振亮
李启凡
马会茹
陈志宏
李维
官建国
关键词:  有机氟包覆  片状吸收剂  复介电常数  阻抗匹配  吸波性能    
Abstract: Triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane (FAS) was proposed to be grafted on the surface of flaky FeSiAl absorbents by a hydroly-tic condensation method. The microstructure, coating composition, static magnetic and electromagnetic properties of flaky FeSiAl absorbents before and after surface coating were characterized. The results showed that the hydrolyzed FAS were successfully grafted on the surface of flaky FeSiAl particles to form a thin and uniform coating, and coated particles still have good soft magnetic properties. Due to the electrical insulation and low polarization properties of the coated layer, the complex permeability of flaky FeSiAl absorbents was nearly unchanged by the coating while complex permittivity was reduced by 40%, which substantially improved the impedance matching of the microwave absorbing materials.When the composite material with a mass fraction of 3% FAS and a mass fraction of absorbent filler of 76% was 3 mm thick, the absorption bandwidth whose reflection loss RL was less than -3 dB increased from 1.206 GHz (0.147—1.353 GHz) to 1.922 GHz (0.147—2.069 GHz), the minimum loss intensity increased from -14.64 dB to -16.90 dB.
Key words:  organic fluorine coating    flaky absorbents    complex permittivity    impedance matching    microwave absorbing materials
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51577138)
通讯作者:  wellee@whut.edu.cn   
作者简介:  陈亮,2017年6月毕业于西华大学,获得工学学士学位,现为武汉理工大学材料科学与工程专业硕士研究生,硕士期间研究方向为吸波材料。
李维,研究员,博士研究生导师。2004年在武汉理工大学获得学士学位。2011年在武汉理工大学获得博士学位并继续从事博士后研究工作,期间赴美国Purdue University访问交流,现于材料复合新技术国家重点实验室从事研究工作。主要从事电磁功能材料研究。目前已在Advanced MaterialsAdvanced Optical MaterialsApplied Physics Letters等期刊发表论文30余篇,主持多项国家自然科学基金项目。2016年入选武汉理工大学15551人才工程青年拔尖人才(第二层次)。
引用本文:    
陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
CHEN Liang, CHEN Shaowen, YUAN Zhenliang, LI Qifan, MA Huiru, CHEN Zhihong, LI Wei, GUAN Jianguo. Grafting of Organic Fluorine on the Surface of Flaky FeSiAl Particles and Its Microwave Absorption Property. Materials Reports, 2022, 36(9): 21030255-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030255  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21030255
1 Liu C, Cai J, Duan Y B, et al. Journal of Magnetism and Magnetic Materials, 2018, 458,116.
2 Sun J, Xu H L, Shen Y, et al. Journal of Alloys and Compounds, 2013, 548,18.
3 Rozanov K N. IEEE Transactions on Antennas and Propagation, 2000,48(8),1230.
4 Dosoudil R, UŠáková M, Franek J, et al. Journal of Magnetism and Magnetic Materials, 2006, 304(2),755.
5 Song Z J, Deng L J, Xie J L, et al. Surface and Interface Analysis, 2014, 46(2),77.
6 Feng Y B, Tang C M, Qiu T. Materials Science and Engineering,2013, 178 (16),1005.
7 Liu C, Yuan Y, Jiang J T, et al. Journal of Magnetism and Magnetic Materials, 2015, 395,152.
8 Wang C, Lv R T, Huang Z H, et al. Journal of Alloys and Compounds, 2011, 509(2),494.
9 Wang F, Long C, Wu T L, et al. Journal of Alloys and Compounds, 2020, 823, 153827.
10 Quan B, Liang X H, Ji G B, et al. Journal of Alloys and Compounds, 2017, 728,1065.
11 Long C, Xu B C, Han C Z, et al. Journal of Alloys and Compounds, 2017, 709,735.
12 Han M K, Yin X W, Ren S, et al. RSC Advances, 2016, 6(8),6467.
13 Endo K, Shinoda K, Tatsumi T. Journal of Applied Physics,1999, 86(5),2739.
14 Wang Z Q, Zhang M Y, Han E L, et al. Polymer,2020, 206, 122884.
15 Zhong X X, Liu Y, Li J, et al. Journal of Magnetism and Magnetic Materials, 2012, 324(17),2631.
16 Woodcock T G, Zhang Y, Hrkac G, et al. Scripta Materialia, 2012, 67(6),536.
17 Wu S, Sun A Z, Xu W H, et al. Journal of Magnetism and Magnetic Materials, 2012, 324(22),3899.
18 Vinodgopal K, Kamat P V. Chemtech, 1996,26(4), 260796.
19 Watanabe T, Fujishima A, Honda K. Bulletin of the Chemical Society of Japan, 1976, 49(2),355.
20 Zhou X Z, Jia Z R, Feng A L, et al. Composites Part B: Engineering, 2020, 192, 107980.
21 Neelakanta P S. Journal of Physics: Condensed Matter,1990, 2(22),4935.
22 Dang Z M, Lin Y H, Nan C W. Advanced Materials, 2003, 15(19),1625.
23 Martin M, Salazar P, Villalonga R, et al. Journal of Materials Chemistry B, 2014, 2(6),739.
24 Kimura S, Kato T, Hyodo T, et al. Journal of Magnetism and Magnetic Materials, 2007, 312(1),181.
25 Lee K, Yun Y C, Jeong I, et al. Materials Science Forum, 2007, 534-536,1465.
26 Feng Y B, Tang C M, Qiu T. Materials Engineering, 2014(2),1(in Chinese).
冯永宝, 唐传明,丘泰. 材料工程, 2014(2),1.
27 Cai X D, Jiang X J, Xie W, et al. Defence Technology, 2018, 14(5),477.
28 Tang C M, Feng Y B,Qiu T. Electronic Components and Materials, 2013, 32(2),43(in Chinese).
唐传明,冯永宝,丘泰. 电子元件与材料,2013, 32(2),43.
[1] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[2] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[3] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[4] 魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
[5] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[6] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[7] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[8] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[9] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[10] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[11] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[12] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[13] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[14] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed