Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10216-10220    https://doi.org/10.11896/cldb.20030156
  高分子与聚合物基复合材料 |
螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理
朱若星1,2, 赵廷凯2, 折胜飞3, 李铁虎2
1 西北工业大学图书馆,西安 710072
2 西北工业大学材料学院,西安 710072
3 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,西安 710119
Preparation and Electromagnetic Wave Absorbing Mechanism of Helical Amorphous Carbon Nanotube/Bismaleimide (HACNT/BMI) Resin Composites
ZHU Ruoxing1,2, ZHAO Tingkai2, SHE Shengfei3, LI Tiehu2
1 Library of Northwestern Polytechnical University, Xi'an 710072, China
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an 710119, China
下载:  全 文 ( PDF ) ( 3899KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型电磁波吸收材料是国防科技中的研究热点和重点,碳材料作为一种轻质吸波材料受到研究者们的广泛重视。本研究利用浮动催化化学气相沉积法制备螺旋非晶碳纳米管,以螺旋非晶碳纳米管作为吸波剂,双马来酰亚胺树脂作为基体制备了螺旋非晶碳纳米管/双马来酰亚胺树脂吸波复合材料。采用扫描电子显微镜、透射电子显微镜、X射线衍射仪和拉曼光谱仪等设备对样品进行微观形貌和结构表征,通过矢量网络分析仪测试其电磁参数。实验结果表明,吸波剂含量的增加增强了螺旋非晶碳纳米管/双马来酰亚胺树脂复合材料的吸波性能,其最大吸收峰值可达-18.35 dB,最大吸波频宽(<-10 dB)为2.56 GHz(9.52~12.08 GHz),反射损耗超过97%,且吸收峰向低频方向移动。螺旋非晶碳纳米管因其特殊的螺旋型结构极大地增加了电磁波反射概率和散射波程,增大了入射电磁波能量损耗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱若星
赵廷凯
折胜飞
李铁虎
关键词:  螺旋非晶碳纳米管  双马来酰亚胺树脂  复合材料  吸波性能  吸波机理    
Abstract: New electromagnetic wave absorbing materials are the hotspot and focus of research in national defense science and technology. Carbonmaterials, as light absorbing materials, have been widely valued by researchers. In this study, we prepared helical amorphous carbon nanotube/bismaleimide (HACNT/BMI) resin composites and investigated their electromagnetic wave absorbing properties. We used helical amorphous carbon nanotubes as adsorbing agents, bismaleimide as matrix to prepare HACNT/BMI resin composites. Helical amorphous carbon nanotubes were prepared by floating catalytic chemical vapor deposition method. Scanning electron microscope (SEM), transmission electron microscope(TEM), X-ray diffractometer (XRD) and Raman spectroscopy were used to characterize the morphology and structure of samples. The electromagnetic parameters of HACNT/BMI composites were measured by vector network analyzer. The results showed that the increasing in the content of absorbing agent enhanced the electromagnetic wave absorbing properties of HACNT/BMI composites. The maximum absorption peak reached -18.35 dB, the widest absorbing bandwidth reached 2.56 GHz(9.52~12.08 GHz) when the RL belows -10 dB, and the reflection loss exceeded 97%. Moreover, the absorption peak of HACNT/BMI composites with higher content of HACNTs shifted towards lower frequency compared to that of the sample with lower content of HACNTs. Our results indicate that the helical structures of HACNTs plays an important role in enhancing the electromagnetic wave absorbing performance of HACNT/BMI composites. The HACNTs could increase the possibility of multiple reflection of electromagnetic wave and the path length of scattered waves. As a result, the energy loss of incident electromagnetic wave was increased.
Key words:  helical amorphous carbon nanotubes    bismaleimide resin    composite materials    electromagnetic wave absorbing performance    electromagnetic wave absorbing mechanism
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TB34  
通讯作者:  ztk-xjtu@163.com   
作者简介:  朱若星,硕士,2016年4月毕业于西北工业大学材料学院,获得工学硕士学位,在赵廷凯教授的指导下进行研究。现就职于西北工业大学图书馆,任材料学科学科馆员。主要研究方向为碳纳米材料、石墨烯等碳材料的制备,通过磁性粒子掺杂碳系材料研究其复合材料在电磁屏蔽、吸波等方面的应用。
赵廷凯,西北工业大学材料学院教授、博士研究生导师,任NPU-NCP新型纳米材料缺陷工程国际联合研究中心主任,陕西省石墨烯新型炭材料及应用工程实验室副主任。2005—2007年在西安交通大学博士后工作站工作,2007年加入西北工业大学材料学院至今,曾国家公派留学美国西北大学材料系和英国牛津大学材料系。在国内外学术期刊上发表论文130余篇,申请国家发明专利10项,其中授权5项,主持和参与国家和省部级科研项目20余项。其团队主要研究方向包括:纳米材料和新型能源材料的应用基础研究,尤其是石墨烯、碳纳米管、石墨-炭及其复合材料的制备工艺、结构与性能研究,以及在锂离子电池、太阳能电池、生物器件、电化学传感器、电磁吸波和屏蔽等领域中的应用研究。
引用本文:    
朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
ZHU Ruoxing, ZHAO Tingkai, SHE Shengfei, LI Tiehu. Preparation and Electromagnetic Wave Absorbing Mechanism of Helical Amorphous Carbon Nanotube/Bismaleimide (HACNT/BMI) Resin Composites. Materials Reports, 2021, 35(10): 10216-10220.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030156  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10216
1 Zhao X N, Nie X Y, Li Y, et al.Journal of Materials Chemistry C, 2019, 7(39), 12270.
2 Qin F, Brosseau C. Journal of Applied Physics, 2012, 111(6), 61301.
3 Luo C, Jiao T, Gu J, et al. ACS Applied Materials & Interfaces, 2018,10(45), 39307.
4 Dai L N, Xie S K, Yu M J, et al. Journal of Magnetism and Magnetic Materials, 2018, 466, 22.
5 Wang C Z, Li J, Guo S Y. RSC Advances, 2019, 9(41), 23843.
6 Tang J, Bi S, Wang X, et al. Journal of Materials Science, 2019, 54(22), 13990.
7 Meng R, Zhang T, Jiao P Z, et al. Journal of Alloys and Compounds, 2019, 798, 386.
8 Song Z M, Liu X F, Sun X, et al. Carbon, 2019, 151, 36.
9 Meng F B, Wang H G, Huang F, et al. Composites Part B: Engineering, 2018, 137,260.
10 Gupta T K, Singh B P, Mathur R B, et al. Nanoscale, 2014, 6(2), 842.
11 Xiao Z, Feng Y, Shen Z, et al. ACS Applied Materials & Interfaces, 2018, 10(29), 24920.
12 Wang B M, Guo Z Q, Han Y, et al. Construction & Building Materials, 2013, 46(46), 98.
13 Li B, Ji Z J, Xie S, et al. Journal of Materials Science Materials in Electronics, 2019, 30(7), 1.
14 Park K Y, Han J H, Kim J B, et al. Journal of Composite Materials, 2011, 45(26), 2773.
15 Li Y H, Deng L W, Luo H, et al. Acta Physica Sinica, 2019, 68(9), 189 (in Chinese).
李宇涵,邓联文,罗衡, 等.物理学报, 2019, 68(9), 189.
16 Zhao T K, Ji X L, Jin W B, et al. Journal of Alloys and Compounds, 2017, 703, 424.
17 Zhao T K, Ji X L, Jin W B, et al. Rsc Advances, 2017, 7(26), 15903.
18 Hu J T, Zhao T K, Peng X R, et al. Composites Part B: Engineering, 2018, 134, 91.
19 Hou C L, Li T H, Zhao T K, et al. Materials & Design, 2012, 33, 413.
20 Hou C, Song S, Wei J, et al. Journal of Superconductivity and Novel Magnetism, 2015, 28(7), 2077.
21 Yin P, Zhang L, Sun P, et al. Ceramics International, 2020, 46(9), 13641.
[1] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[2] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[3] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[4] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[5] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[6] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[7] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[8] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[9] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[10] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[11] 崔俊杰, 郭章新, 朱明, 李永存, 栾云博, 杨强. 表面带金属层的复合材料层合板低速冲击数值模拟[J]. 材料导报, 2021, 35(4): 4150-4158.
[12] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[13] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[14] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[15] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed