Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4053-4060    https://doi.org/10.11896/cldb.19070030
  无机非金属及其复合材料 |
温度老化对GFRP/BFRP筋残余弯曲性能的影响
徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进
江苏大学土木工程与力学学院,镇江 212000
Effect of Temperature Aging on Residual Bending Performance of GFRP/BFRP Bars
XU Ke, LU Chunhua, XUAN Guangyu, NI Mingzhi, ZHANG Lingling, ZHOU Jun, XU Rongjin
Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212000, China
下载:  全 文 ( PDF ) ( 5821KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对玻璃/玄武岩纤维增强复合材料(GFRP/BFRP)筋材在温度老化作用后的弯曲性能进行了试验研究,重点探讨了不同作用温度及恒温时间对不同直径的两类FRP筋材的弯曲性能影响特性,同时采用扫描电子显微镜(SEM)对温度老化作用后部分GFRP/BFRP筋的微观结构变化及损伤机理进行了分析。试验与分析结果表明:(1)温度老化作用后GFRP/BFRP筋材弯曲强度与最大应变随作用温度升高均呈阶段性下降的趋势,而弯曲弹性模量无明显退化,其保留率均在90%以上;(2)温度老化作用后直径较大的GFRP筋材的弯曲性能退化更为明显;且G12筋的弯曲性能保留率退化曲线均高于B12筋,说明BFRP筋的弯曲性能对温度作用更为敏感;(3)在270 ℃高温环境下,GFRP/BFRP筋弯曲性能随着恒温时间的延长均呈现线性下降趋势;(4)结合试验结果和SEM微观结构分析,可认为造成温度老化作用后两类FRP筋弯曲强度退化的主要原因是纤维与树脂基体间协同工作效果和纤维-树脂基体界面性能的显著降低。最后,结合本试验结果,给出了500 ℃以内温度老化作用后GFRP/BFRP筋材弯曲强度退化的计算模型以及线性插值预测方法,便于实际工程应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐可
陆春华
宣广宇
倪铭志
张灵灵
周隽
徐荣进
关键词:  温度老化作用  玻璃/玄武岩纤维增强复合材料(GFRP/BFRP)筋  残余弯曲性能  扫描电子显微镜(SEM)  折减系数    
Abstract: This paper experimentally studied the bending performance of glass/basalt fiber reinforced polymer (GFRP/BFRP) bars after temperature aging treatment, mainly studying the effects of different operating temperature and constant temperature time on the bending performance of two types of FRP bars with different diameters, and scanning electron microscopy (SEM) was used to analyze the microstructure changes and damage mechanism of GFRP/BFRP bars after temperature aging treatment. The test and analysis results indicate that: Ⅰ. The bending strength and maximum strain of GFRP/BFRP bars tend to decrease gradually with increasing temperature after temperature aging treatment, while the bending elastic modulus does not deteriorate significantly and its retention rates are above 90%. Ⅱ. The bending performance of the GFRP bars with larger diameter is obviously degenerated after temperature aging treatment; and the bending performance retention degradation curve of G12 bars is higher than that of B12 bars, indicating that the bending performance of BFRP bars are more sensitive to operating temperature. Ⅲ. In the high temperature environment of 270 ℃, the bending strength of GFRP/BFRP bars tends to decrease linearly with the increase of constant temperature time. Ⅳ. Combined with the test results and SEM microstructural analysis, it can be considered that the main reasons for the degradation of bending strength of two types of FRP bars after temperature aging treatment are the synergistic effect between fiber and resin matrix and the significant decrease of fiber-resin matrix interface performance. Finally, combined with the experimental results of this paper, after temperature aging treatment the calculation model of the bending strength degradation of GFRP/BFRP bars and the linear interpolation prediction method were given to be within 500 ℃, which is convenient for practical engineering applications.
Key words:  after temperature aging treatment    glass/basalt fiber reinforced polymer (GFRP/BFRP) bars    residual bending performance    scanning electron microscope (SEM)    reduction factor
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TU502+.6  
基金资助: 国家自然科学基金(51578267;51878319;51608235);江苏省“六大人才高峰”高层次人才选拔培养资助项目(2015-JZ-008)
通讯作者:  lch79@ujs.edu.cn   
作者简介:  徐可,硕士研究生,江苏大学土木工程与力学学院,建筑与土木工程专业。主要从事FRP筋混合配筋混凝土结构性能的研究。陆春华,江苏大学土木工程与力学学院教授、博士研究生导师。2011年6月毕业于浙江大学,获得结构工程专业博士学位。主要从事混凝土结构基本性能及耐久性、FRP筋混合配筋混凝土结构性能的研究。
引用本文:    
徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
XU Ke, LU Chunhua, XUAN Guangyu, NI Mingzhi, ZHANG Lingling, ZHOU Jun, XU Rongjin. Effect of Temperature Aging on Residual Bending Performance of GFRP/BFRP Bars. Materials Reports, 2021, 35(4): 4053-4060.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070030  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4053
1 Liu J S. Research on long term performance of GFRP bars embedded in concrete. Master's Thesis, Wuhan University of Technology, China, 2012 (in Chinese).
刘久思. 混凝土梁中GFRP筋的长期耐久性能研究. 硕士学位论文, 武汉理工大学, 2012.
2 Park Y, Kim Y H, Lee S H. Polymers, 2014, 6(6), 1773.
3 Al-Salloum Y A, Elsanadedy H M, Abadel A A. Construction & Building Materials, 2011, 25(2), 838.
4 Dou F, Ouyang L J, Lu Z D, et al. Fiber Reinforced Plastics/Composites, 2016(7), 79(in Chinese).
都凡, 欧阳利军, 陆洲导, 等. 玻璃钢/复合材料, 2016(7), 79.
5 Wang X L, Zha X X, Zhang X C. Journal of Harbin Institute of Technology, 2013, 45(6),8 (in Chinese).
王晓璐, 查晓雄, 张旭琛. 哈尔滨工业大学学报, 2013, 45(6),8.
6 Zhou C D, Lv X L, Jin Y.Jouranl of Architecture and Civil Engineering, 2006, 23(1), 23(in Chinese).
周长东, 吕西林, 金叶. 建筑科学与工程学报, 2006, 23(1), 23.
7 Wang Y C, Kodur V. Cement and Concrete Composites, 2005, 27(9-10), 864.
8 Wang X L, Zha X X. Journal of South China University of Technology(Natural Science Edition), 2011, 39(9), 75 (in Chinese).
王晓璐, 查晓雄. 华南理工大学学报(自然科学版), 2011, 39(9), 75.
9 Tang J Y, Gao D Y, Zhao J, et al. Engineering Plastics Application, 2009(3), 63(in Chinese).
汤寄予, 高丹盈, 赵军, 等. 工程塑料应用, 2009(3), 63.
10 Yu B, Vallee T, Thomas K. Composites Science & Technology, 2007, 67(15-16), 3098.
11 Li C C, Wang Y L, Zhao J, et al. Journal of Building Materials, 2014, 17(6), 1076(in Chinese).
李趁趁, 王英来, 赵军, 等. 建筑材料学报, 2014, 17(6), 1076.
12 Gao W Y, Lu Z D, Hu K X. Journal of Civil, Architectural & Environmental Engineering, 2008, 30(6), 128(in Chinese).
高皖扬, 陆洲导, 胡克旭. 土木建筑与环境工程, 2008, 30(6), 128.
13 Fu Y N. Experimental study on high temperature performance of glass fiber reinforced polymer. Master's Thesis, Zhengzhou University, China, 2009 (in Chinese).
付亚男. 玻璃纤维聚合物筋高温性能试验研究. 硕士学位论文, 郑州大学, 2009.
14 Jin Q P, Tian Y W, Yao P, et al. Industrial Construction, 2017(11), 6(in Chinese).
金清平, 田亚威, 姚鹏, 等. 工业建筑, 2017(11), 6.
15 Wei B, Cao H, Song S. Corrosion Science, 2011, 53(1), 426.
16 Wu G, Zhu Y, Dong Z Q, et al. China Civil Engineering Journal, 2014(8), 32(in Chinese).
吴刚, 朱莹, 董志强, 等. 土木工程学报, 2014(8), 32.
17 Wang H L, Li C K, Guo F. Fiber Reinforced Plastics/Composites, 2017(8), 61(in Chinese).
王海良, 李长坤, 郭富.璃钢/复合材料, 2017(8), 61.
18 Ashrafi H, Bazli M, Najafabadi E P, et al. Construction and Building Materials, 2017, 157, 1001.
19 Esmaeil P N, Asghar V O, Mohammad H K, et al. Construction and Building Materials, 2019,211, 1138.
20 Wang Y C, Wong P M H, Kodur V. Steel Construction, 2007,80(1), 131.
21 Yu B, Kodur V. Composites Part B: Engineering, 2014, 58, 510.
22 Robert M, Benmokrane B.Journal of Composites for Construction, 2010, 14(4), 353.
23 Fu C L, Chen L, Zhang Y L. Fiber Reinforced Plastics/Composites, 2016 (5), 74(in Chinese).
付成龙, 陈利, 张雅璐. 玻璃钢/复合材料, 2016 (5), 74.
24 Zhang H X, He L Y. Fiber Reinforced Plastics/Composites, 2016(3), 5 (in Chinese).
张海霞, 何禄源. 玻璃钢/复合材料, 2016(3), 5.
25 Wu J Y. Study on the performance of BFRP rebar at elevated temperature. Master's Thesis, Institute of Engineering Mechanics, China Earthquake Administration, China, 2011 (in Chinese).
吴敬宇. 玄武岩纤维复合筋高温性能研究. 硕士学位论文, 中国地震局工程力学研究所, 2011.
26 Li H, Xian G, Lu Z. Construction & Building Materials, 2016, 127, 1029.
27 Ke W, Young B, Smith S T.Engineering Structures, 2011, 33(7), 2154.
[1] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[2] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[3] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed